People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Walker, J. C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2015Reproducing automotive engine scuffing using a lubricated reciprocating contactcitations
- 2015Corrosion resistance enhancement of Ti-6Al-4V Alloy by pulsed electron irradiation for biomedical applications
- 2014Nanostructures in austenitic steel after EDM and pulsed electron beam irradiationcitations
- 2014Subsurface modifications in powder metallurgy aluminium alloy composites reinforced with intermetallic MoSi2 particles under dry sliding wearcitations
- 2014The effect of large-area pulsed electron beam melting on the corrosion and microstructure of a Ti6Al4V alloycitations
- 2013Pulsed electron beam surface melting of CoCrMo alloy for biomedical applicationscitations
- 2013Results of a UK industrial tribological survey
- 2013The influence of start-stop velocity cycling on the friction and wear behaviour of a hyper-eutectic Al-Si automotive alloycitations
- 2013A FIB/TEM study of butterfly crack formation and white etching area (WEA) microstructural changes under rolling contact fatigue in 100Cr6 bearing steelcitations
- 2013Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steelcitations
- 2012Investigation of erosion-corrosion mechanisms of UNS S31603 using FIB and TEMcitations
- 2011A study on the evolution of surface and subsurface wear of UNS S31603 during erosion-corrosioncitations
- 2011Dry sliding wear behaviour of powder metallurgy Al-Mg-Si alloy-MoSi2 composites and the relationship with the microstructurecitations
- 2008Oxidation characteristics of gamma-TiAl-8Nb coated with a CrAlYN/CrN nanoscale multilayer coating
- 2008Oxidation characteristics of γ-TiAl-8Nb coated with a CrAlYN/CrN nanoscale multilayer coating
- 2007TEM characterisation of near surface deformation resulting from lubricated sliding wear of aluminium alloy and compositescitations
- 2006Site specific SEM/FIB/TEM for analysis of lubricated sliding wear of aluminium alloy compositescitations
- 2005Lubricated sliding wear behaviour of aluminium alloy compositescitations
Places of action
Organizations | Location | People |
---|
article
Reproducing automotive engine scuffing using a lubricated reciprocating contact
Abstract
The frequency and severity of scuffing in automotive engines has the potential to increase due to new low-viscosity lubricants for fuel efficiency and increased cylinder power output. This work is to understand the fundamental causes and events resulting in piston ring and liner scuffing. A TE-77 high frequency reciprocating tribometer was used with a synthetic PAO base oil (4cSt) to reciprocate a 52100 G5 barrel against a ground pearlitic Grade 250 grey cast iron.<br/><br/>Samples were run-in at 50 N and 10 Hz prior to a temperature ramp to 150 °C followed by a discreet load ramp to 1 kN (0.49 GPa). The tests were terminated when a sharp increase in the average friction force was observed indicating that scuffing had occurred. 3D optical profilometry showed that the scuffed cast iron surface consisted of smeared platelets and craters of View the MathML source35?m depth. SEM and EDX analyses suggested adhesive transfer of cast iron material to the counter-surface was occurring by failure along lamellar graphite interfaces. Tests were repeated using instantaneous high-speed friction data and indicated that micro-scuffing initiated at a load of 620 N. Focused ion beam cross-sections of the mildly scuffed surface confirmed the mechanism of sub-surface crack initiation occurring along lamellar graphite boundaries.