Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Pinedo, C. E.

  • Google
  • 4
  • 5
  • 89

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2017Development and microstructure characterization of single and duplex nitriding of UNS S31803 duplex stainless steel44citations
  • 2014Cavitation erosion resistance of active screen-low temperature plasma nitrided AISI 410 martensitic stainless steelcitations
  • 2014Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel45citations
  • 2014Development of duplex high temperature gas nitriding and low temperature plasma nitriding surface treatments for UNS S31803 duplex stainless steelcitations

Places of action

Chart of shared publication
Tschiptschin, A. P.
4 / 9 shared
Dong, Hanshan
4 / 42 shared
Varela, L. B.
2 / 2 shared
Li, Xiaoying
4 / 21 shared
Espitia, L. A.
2 / 3 shared
Chart of publication period
2017
2014

Co-Authors (by relevance)

  • Tschiptschin, A. P.
  • Dong, Hanshan
  • Varela, L. B.
  • Li, Xiaoying
  • Espitia, L. A.
OrganizationsLocationPeople

article

Cavitation erosion resistance and wear mechanisms of active screen low temperature plasma nitrided AISI 410 martensitic stainless steel

  • Tschiptschin, A. P.
  • Dong, Hanshan
  • Espitia, L. A.
  • Pinedo, C. E.
  • Li, Xiaoying
Abstract

Quenched and tempered AISI 410 martensitic stainless steel specimens were active screen plasma nitrided in a mixture of 75% of nitrogen and 25% of hydrogen during 20 h at 400 °C. The microstructure of the nitrided case was characterized by optical microscopy, scanning electron microscopy and microhardness measurements. The phases were identified by X-ray diffraction and the nitrogen content as a function of depth was measured using wavelength dispersive X-ray spectrometer coupled to SEM. Nanoindentation tests were carried out in order to assess hardness (H), Young modulus (E), H/E and H3/E2 ratios and the elastic recovery (We) of the nitrided layer. Cavitation erosion tests were carried out according to ASTM G32 standard during 20 h, with periodical interruptions for registering the mass losses. Additional cavitation erosion tests were performed to identify the wear mechanisms in both specimens, through assessment of the evolution of the damage on the surface, in a scanning electron microscope. A ~28 µm thick, 1275 HV hard nitrided case formed at the surface of the martensitic stainless steel, composed of nitrogen supersaturated expanded martensite and hexagonal ε-Fe24N10 iron nitrides. The expanded martensite decreased 27 times the mass loss shown by the non-nitrided stainless steel and the erosion rate decreased from 2.56 mg/h to 0.085 mg/h. The increase in cavitation erosion resistance can be mainly attributed to the increase in hardness and to the elastic response of the expanded martensite. The non-nitrided specimen changed from initially ductile to brittle behavior, exhibiting two different modes of material detachment. The first mode was characterized by a great degree of plastic deformation, fatigue and ductile fracture. The second failure mode could be associated to brittle fracture by cleavage mechanisms. In contrast, the wear mechanism observed in the nitrided specimen was brittle fracture without evident plastic deformation.

Topics
  • microstructure
  • surface
  • polymer
  • stainless steel
  • phase
  • scanning electron microscopy
  • x-ray diffraction
  • Nitrogen
  • nitride
  • fatigue
  • hardness
  • nanoindentation
  • Hydrogen
  • iron
  • optical microscopy