Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Yao, W.

  • Google
  • 2
  • 6
  • 73

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2015A continuous fiber distribution material model for human cervical tissue.51citations
  • 2014Rolling Contact Fatigue of Three Crossing Nose Materials—Multiscale FE Approach22citations

Places of action

Chart of shared publication
Fernandez, M.
1 / 4 shared
Vink, J.
1 / 1 shared
Cp, Hendon
1 / 2 shared
Pletz, Martin
1 / 12 shared
Ossberger, H.
1 / 1 shared
Daves, W.
1 / 2 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Fernandez, M.
  • Vink, J.
  • Cp, Hendon
  • Pletz, Martin
  • Ossberger, H.
  • Daves, W.
OrganizationsLocationPeople

article

Rolling Contact Fatigue of Three Crossing Nose Materials—Multiscale FE Approach

  • Pletz, Martin
  • Ossberger, H.
  • Daves, W.
  • Yao, W.
Abstract

n this work finite element models at different length scales are applied to predict the performance of three different crossing materials (Manganese steel, Hardox and Marage 300) in view of the development of rolling contact fatigue (RCF) cracks. A model of the whole crossing (crossing model) is used for the calculation of the dynamic forces and movements of wheel and crossing. For the prediction of RCF repeated loadings have to be calculated, but only a reduced model permits a sufficiently fine mesh and reasonable computing times. Therefore, a simplified model of the wheel and the crossing nose (impact model) is developed, which uses the dynamic movements of the crossing model as boundary conditions. The accumulation of plastic strains in the crossing, the build-up of residual stresses and the geometric adaption of the crossing to the loads is studied for 81 load cycles. The contact pressures, shear stresses and residual stresses of the impact model with the adapted geometries of the 81st cycle are applied to a two-dimensional model with a surface crack (crack model). Using data from measured crack growth curves, the three materials can be compared in terms of crack development and growth.

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • crack
  • steel
  • fatigue
  • two-dimensional
  • Manganese