Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Hoskins, T. J.

  • Google
  • 1
  • 3
  • 94

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2014The wear of PEEK in rolling-sliding contact - simulation of polymer gear applications94citations

Places of action

Chart of shared publication
Chen, Y. K.
1 / 3 shared
Kukureka, S. N.
1 / 2 shared
Dearn, K. D.
1 / 11 shared
Chart of publication period
2014

Co-Authors (by relevance)

  • Chen, Y. K.
  • Kukureka, S. N.
  • Dearn, K. D.
OrganizationsLocationPeople

article

The wear of PEEK in rolling-sliding contact - simulation of polymer gear applications

  • Chen, Y. K.
  • Kukureka, S. N.
  • Dearn, K. D.
  • Hoskins, T. J.
Abstract

The wear and friction in the pitch region of the centre of polymer gear teeth are not well understood. The transition around this point of the tooth between rolling and sliding has an important effect on the durability of polymer gear drives and can be simulated using a twin-disc configuration. This paper investigates the rolling-sliding wear behaviour of two poly-ether-ether-ketone (PEEK) discs running against each other with a simplified method of analysing and understanding the dynamic response of high performance polymeric gear teeth. Tests were conducted without external lubrication over a range of loads and slip ratios, using a twin-disc test rig. The wear and friction mechanisms were closely related to surface morphology, with changes in crystallinity correlating with the severity of operating conditions. Observed failure mechanisms were also related to the structure of the contact surfaces, and included surface melting and contact fatigue. Overall the PEEK discs were capable of running at low slip ratios for both low and high loads. Their performance reduced with an increase of the slip ratio. The results presented can be used in conjunction with the design process to allow the PEEK to be engineered for a specific high performance gear contact conditions.

Topics
  • morphology
  • surface
  • polymer
  • simulation
  • fatigue
  • durability
  • ketone
  • crystallinity