People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dearn, K. D.
University of Birmingham
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2023Characterisation of soot agglomerates from engine oil and exhaust system for modern compression ignition enginescitations
- 2022Bio-Tribo-Acoustic Emissions: Condition Monitoring of a Simulated Joint Articulationcitations
- 2020A method for the assessment of the coefficient of friction of articular cartilage and a replacement biomaterialcitations
- 2019Improvement of the tribological behaviour of palm biodiesel via partial hydrogenation of unsaturated fatty acid methyl esterscitations
- 2018The tribology of fructose derived biofuels for DISI gasoline enginescitations
- 2017Corrosion and tribological performance of quasi-stoichiometric titanium containing carbo-nitride coatingscitations
- 2017Crack growth in medical-grade silicone and polyurethane ether elastomerscitations
- 2017The influence of variations of geometrical parameters on the notching stress intensity factors of cylindrical shellscitations
- 2016The Tribology of cleaning processescitations
- 2015The evolution of polymer wear debris from total disc arthroplastycitations
- 2014The wear of PEEK in rolling-sliding contact - simulation of polymer gear applicationscitations
Places of action
Organizations | Location | People |
---|
article
The wear of PEEK in rolling-sliding contact - simulation of polymer gear applications
Abstract
The wear and friction in the pitch region of the centre of polymer gear teeth are not well understood. The transition around this point of the tooth between rolling and sliding has an important effect on the durability of polymer gear drives and can be simulated using a twin-disc configuration. This paper investigates the rolling-sliding wear behaviour of two poly-ether-ether-ketone (PEEK) discs running against each other with a simplified method of analysing and understanding the dynamic response of high performance polymeric gear teeth. Tests were conducted without external lubrication over a range of loads and slip ratios, using a twin-disc test rig. The wear and friction mechanisms were closely related to surface morphology, with changes in crystallinity correlating with the severity of operating conditions. Observed failure mechanisms were also related to the structure of the contact surfaces, and included surface melting and contact fatigue. Overall the PEEK discs were capable of running at low slip ratios for both low and high loads. Their performance reduced with an increase of the slip ratio. The results presented can be used in conjunction with the design process to allow the PEEK to be engineered for a specific high performance gear contact conditions.