People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Harvey, T. J.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2019Cavitation erosion performance of CrAlYN/CrN nanoscale multilayer coatings deposited on Ti6Al4V by HIPIMScitations
- 2013Results of a UK industrial tribological survey
- 2013Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steelcitations
- 2012Investigation of erosion-corrosion mechanisms of UNS S31603 using FIB and TEMcitations
- 2011A study on the evolution of surface and subsurface wear of UNS S31603 during erosion-corrosioncitations
- 2011Electrochemical investigation of erosion-corrosion using a slurry pot erosion testercitations
- 2010Scuffing detection of TU3 cam–follower contacts by electrostatic charge condition monitoringcitations
- 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutionscitations
- 2009Surface potential effects on friction and abrasion of sliding contacts lubricated by aqueous solutionscitations
- 2009Advanced condition monitoring of tapered roller bearings, part1citations
- 2009Erosion-corrosion resistance of engineering materials in various test conditionscitations
- 2009Evaluation of a semi-empirical model in predicting erosion–corrosioncitations
- 2007Real-time monitoring of wear debris using electrostatic sensing techniquescitations
- 2003Wear performance of oil lubricated silicon nitride sliding against various bearing steelscitations
- 2003Electrostatic charge monitoring of unlubricated sliding wear of a bearing steelcitations
- 2002Use of electrostatic charge monitoring for early detection of adhesive wear in oil lubricated contactscitations
Places of action
Organizations | Location | People |
---|
article
Influence of microstructure on the erosion and erosion–corrosion characteristics of 316 stainless steel
Abstract
The economic impact of surface damage and component failure arising from solid particle impact in the UK has been estimated in 1997 at around d20 million [1]. The additional complexity associated with erosion in a corrosive environment such as that encountered in the chemical and hydro-carbon extraction industries can significantly accelerate surface wear and material loss. In this study, surface material response of a stainless 316 alloy subject to erosion and erosion–corrosion was investigated by focused ion beam (FIB) and transmission electron microscopy (TEM) techniques. Samples tested in a slurry pot apparatus using 1% uncrushed silica at 7 m/s for 60 min, both in water and 3.5% NaCl solution. Site specific FIB–TEM lamellas showed that solid particle impact resulted in extensive crater and lip formations and a martensitic phase transformation at the surface. The presence of a corrosive fluid resulted in preferential dissolution of the martensitic phase, reducing the work hardening behaviour and promoting greater elongation to failure and thus higher erosion–corrosion rates. These results are discussed in light of the extensive literature on solid particle impact and corrosion by considering the influence of nano-scale phase changes which can often only be observed using transmission electron microscopy.