Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menger, C.

  • Google
  • 2
  • 3
  • 164

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials98citations
  • 2007Exposure effects of alkaline drilling fluid on the microscale abrasion–corrosion of WC-based hardmetals66citations

Places of action

Chart of shared publication
Wood, Robert J. K.
2 / 93 shared
Wharton, Julian A.
2 / 27 shared
Thakare, M. R.
2 / 4 shared
Chart of publication period
2012
2007

Co-Authors (by relevance)

  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Thakare, M. R.
OrganizationsLocationPeople

article

Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials

  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Thakare, M. R.
  • Menger, C.
Abstract

Downhole drilling operations expose tungsten carbide based sintered (WC–5.7Co–0.3Cr) and sprayed (WC–10Co–4Cr) hardmetals to abrasives of different sizes. Although the effect of abradant size on the abrasive wear of metals has been widely studied, the effect of particle size on the abrasive wear of sintered and sprayed tungsten carbide-based hardmetals has not been examined previously. The abrasion of hardmetal composite surfaces is complex due to the presence of hard and soft phases which respond differently during abrasive wear, where an increase in abrasive size leads to a change in the wear mechanism which significantly affects the overall wear rates. Three different abrasive sizes, 4.5 ?m, 17.5 ?m and 180 ?m, were used in a modified ASTM G65 rubber wheel abrasion test to examine the effects of abrasive size on wear in a sintered WC and a D-gun sprayed WC-based coating. Uniquely, influential parameters affecting the wear mechanisms have been examined and identified with the fundamental material properties of both abrasives and the multi-phase materials. As a unique way of mapping abrasion performance, a parameter previously developed for the micro-abrasion tester, ‘severity of contact’, has been reworked and plotted against a ‘brittleness factor’ parameter developed in this work. Plotting these parameters can explain the sharp rise in wear rates associated with the transition from ductile, plastic deformation dominated material removal to a more fracture-related material removal as the size of abrasives increases. This work has developed new insights into how hardmetal composites respond to change in abrasive size and provides a basis for controlling the abrasive particle size.<br/><br/>

Topics
  • impedance spectroscopy
  • microstructure
  • surface
  • phase
  • carbide
  • composite
  • tungsten
  • rubber