Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Menger, C.

  • Google
  • 2
  • 3
  • 164

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Effect of abrasive particle size and the influence of microstructure on the wear mechanisms in wear-resistant materials98citations
  • 2007Exposure effects of alkaline drilling fluid on the microscale abrasion–corrosion of WC-based hardmetals66citations

Places of action

Chart of shared publication
Wood, Robert J. K.
2 / 93 shared
Wharton, Julian A.
2 / 27 shared
Thakare, M. R.
2 / 4 shared
Chart of publication period
2012
2007

Co-Authors (by relevance)

  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Thakare, M. R.
OrganizationsLocationPeople

article

Exposure effects of alkaline drilling fluid on the microscale abrasion–corrosion of WC-based hardmetals

  • Wood, Robert J. K.
  • Wharton, Julian A.
  • Thakare, M. R.
  • Menger, C.
Abstract

The microscale abrasion–corrosion performance has been examined for two sintered hardmetals, WC–6Co and WC–11Ni, and two WC–10Co–4Cr sprayed coatings after exposure to a water-based alkaline drilling fluid for 168 h. A series of tests were also performed on freshly polished sintered hardmetals and coatings using both NaOH (pH 11) and neutral SiC aqueous slurries. Contrary to expectations, micro-abrasion under alkaline conditions generally resulted in lower wear rates producing a negative 8–18% abrasion–corrosion synergy, with the exception of the sintered WC–11Ni. Typically, wear scars for the sintered hardmetals were 7–8 carbides deep and the wear mechanism was binder depletion and undermining of the carbides. While the corrosion performance of the sintered hardmetals was only slightly affected when exposed to the alkaline drilling fluid, there was a marked decrease in the anodic behaviour for the WC–10Co–4Cr coatings. SEM analysis revealed that exposure to the drilling fluid resulted in a localised corrosion zone at the binder–carbide interface approximately 100 nm wide. This selective corrosion will alter the surface composition in addition to influencing mechanical properties such as the surface roughness, hardness, surface compliance and synergistic effects. The synergy results for both sintered and sprayed coatings are discussed in terms of the wear mechanisms at the microscale, selective phase removal and the effects of localised passivation.

Topics
  • surface
  • corrosion
  • phase
  • scanning electron microscopy
  • carbide
  • hardness