People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Szabo, Peter
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2020Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocompositescitations
- 2020Effect of Crystallinity on Water Vapor Sorption, Diffusion, and Permeation of PLA-Based Nanocompositescitations
- 2019Impact of thermal processing or solvent casting upon crystallization of PLA nanocellulose and/or nanoclay compositescitations
- 2018Modelling of rheological properties in polystyrene with long-chain branching
- 2016Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistancecitations
- 2016Hybrid poly(lactic acid)/nanocellulose/nanoclay composites with synergistically enhanced barrier properties and improved thermomechanical resistancecitations
- 2016A comparison of partially acetylated nanocellulose, nanocrystalline cellulose, and nanoclay as fillers for high-performance polylactide nanocompositescitations
- 2015Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomerscitations
- 2015Enhancement of dielectric permittivity by incorporating PDMS-PEG multiblock copolymers in silicone elastomerscitations
- 2015Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulkingcitations
- 2015Nanocellulose fibers applied in PLA composites for food packaging applications
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multi block copolymers in binary polymer blends
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends
- 2015Enhancing relative permittivity by incorporating PDMS-PEG multiblock copolymers in binary polymer blends
- 2015A soft and conductive PDMS-PEG block copolymer as a compliant electrode for dielectric elastomers
- 2015Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2015Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2014Properties of slurries made of fast pyrolysis oil and char or beech woodcitations
- 2014Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2014Improving dielectric permittivity by incorporating PDMS-PEG block copolymer into PDMS network
- 2012Constant force extensional rheometry of polymer solutionscitations
- 2007Computational modeling of concrete flow:General overviewcitations
- 2005Topas Based Lab-on-a-chip Microsystems Fabricated by Thermal Nanoimprint Lithographycitations
- 2005An Investigation on Rheology of Peroxide Cross-linking of Low Density Polyethylene
- 2004Nanoimprint lithography in the cyclic olefin copolymer, Topas, a highly ultraviolet-transparent and chemically resistant thermoplastcitations
- 2004Axi-Symmetric Simulation of the Slump Flow Test for Self-Compacting
- 2003Rheological behaviour of polyethylene with peroxide crosslinking agent. Ismaeil Ghasemi, Peter Szabo and Henrik Koblitz Rasmussen
Places of action
Organizations | Location | People |
---|
article
Microthrix parvicella abundance associates with activated sludge settling velocity and rheology - Quantifying and modelling filamentous bulking
Abstract
The objective of this work is to identify relevant settling velocity and rheology model parameters and to assess the underlying filamentous microbial community characteristics that can influence the solids mixing and transport in secondary settling tanks. Parameter values for hindered, transient and compression settling velocity functions were estimated by carrying out biweekly batch settling tests using a novel column setup through a four-month long measurement campaign. To estimate viscosity model parameters, rheological experiments were carried out on the same sludge sample using a rotational viscometer. Quantitative fluorescence in-situ hybridisation (qFISH) analysis, targeting Microthrix parvicella and phylum Chloroflexi, was used. This study finds that M. parvicella - predominantly residing inside the microbial flocs in our samples - can significantly influence secondary settling through altering the hindered settling velocity and yield stress parameter. Strikingly, this is not the case for Chloroflexi, occurring in more than double the abundance of M. parvicella, and forming filaments primarily protruding from the flocs. The transient and compression settling parameters show a comparably high variability, and no significant association with filamentous abundance. A two-dimensional, axi-symmetrical computational fluid dynamics (CFD) model was used to assess calibration scenarios to model filamentous bulking. Our results suggest that model predictions can significantly benefit from explicitly accounting for filamentous bulking by calibrating the hindered settling velocity function. Furthermore, accounting for the transient and compression settling velocity in the computational domain is crucial to improve model accuracy when modelling filamentous bulking. However, the case-specific calibration of transient and compression settling parameters as well as yield stress is not necessary, and an average parameter set - obtained under bulking and good settling conditions - can be used.