Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Banks, Charles J.

  • Google
  • 3
  • 5
  • 349

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2012Assessment of the potential for biogas production from wheat straw leachate in upflow anaerobic sludge blanket digesters15citations
  • 2012Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water327citations
  • 2011Integration of on-farm biodiesel production with anaerobic digestion to maximise energy yield and greenhouse gas savings from process and farm residues7citations

Places of action

Chart of shared publication
Idrus, S.
1 / 2 shared
Heaven, Sonia
2 / 2 shared
Hakami, Othman
1 / 2 shared
Zhang, Yue
1 / 1 shared
Salter, Andrew M.
1 / 1 shared
Chart of publication period
2012
2011

Co-Authors (by relevance)

  • Idrus, S.
  • Heaven, Sonia
  • Hakami, Othman
  • Zhang, Yue
  • Salter, Andrew M.
OrganizationsLocationPeople

article

Thiol-functionalised mesoporous silica-coated magnetite nanoparticles for high efficiency removal and recovery of Hg from water

  • Banks, Charles J.
  • Hakami, Othman
  • Zhang, Yue
Abstract

The preparation and testing of thiol-functionalised silica-coated magnetite nanoparticles (TF-SCMNPs) is described. The characteristics of these particles are assessed at different stages in the production process using X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), and a magnetometer. The particles were found to be almost spherical with a uniform mesoporous structure with a pore size of ?2.1 nm. The particles were strongly responsive to an external magnetic field making separation from solution possible in less than 1 min. The adsorption characteristics of the particles were quantified in a series of isotherm experiments using Hg(II) solution concentrations between 40 and 1000 ?g l?1 at adsorbent concentrations of 4 and 8 mg l?1. The adsorption capacity was higher than for other commonly used adsorbents with 90% of Hg(II) removed during the first 5 min and equilibrium in less than 15 min. Both the Langmuir and Freundlich isotherm models were applied to the isotherm data and the maximum adsorption capacity was achieved when the ratio of adsorbent to adsorbate was low. Both temperature and pH had an effect on adsorption but when the TF-SCMNPs were used for removal of Hg(II) from tap water and bottled water, which contained other ions, there appeared to be no interference. Hg(II) could be successfully desorbed using thiourea in a 3 M HCl solution; this did not result in the destruction of the nanoparticles and they could subsequently be reused without loss of their activity in repetitive adsorption tests.

Topics
  • nanoparticle
  • impedance spectroscopy
  • pore
  • x-ray diffraction
  • experiment
  • laser emission spectroscopy
  • transmission electron microscopy
  • Fourier transform infrared spectroscopy