People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pikaar, Ilje
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2020Effects of aging of ferric-based drinking water sludge on its reactivity for sulfide and phosphate removalcitations
- 2017Electrochemical oxidation of iron and alkalinity generation for efficient sulfide control in sewerscitations
- 2011Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodescitations
Places of action
Organizations | Location | People |
---|
article
Electrochemical sulfide oxidation from domestic wastewater using mixed metal-coated titanium electrodes
Abstract
Hydrogen sulfide generation is a major issue in sewer management. A novel method based on electrochemical sulfide oxidation was recently shown to be highly effective for sulfide removal from synthetic and real sewage. Here, we compare the performance of five different mixed metal oxide (MMO) coated titanium electrode materials for the electrochemical removal of sulfide from domestic wastewater. All electrode materials performed similarly in terms of sulfide removal, removing 78±5%, 77±1%, 85±4%, 84±1%, and 83±2% at a current density of 10mA/cm<sup>2</sup> using Ta/Ir, Ru/Ir, Pt/Ir, SnO<sub>2</sub> and PbO<sub>2</sub>, respectively. Elevated chloride concentrations, often observed in coastal areas, did not entail any significant difference in performance. Independent of the electrode material used, sulfide oxidation by in situ generated oxygen was the predominant reaction mechanism. Passivation of the electrode surface by deposition of elemental sulfur did not occur. However, scaling was observed in the cathode compartment. This study shows that all the MMO coated titanium electrode materials studied are suitable anodic materials for sulfide removal from wastewater. Ta/Ir and Pt/Ir coated titanium electrodes seem the most suitable electrodes since they possess the lowest overpotential for oxygen evolution, are stable at low chloride concentration and are already used in full scale applications. © 2011 Elsevier Ltd.