People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Font, Xavier
Universitat Autònoma de Barcelona
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Cu/ZnO/CeO2 Supported on MOF-5 as a Novel Catalyst for the CO2 Hydrogenation to Methanolcitations
- 2023Magnetite-based nanoparticles and nanocomposites for recovery of overloaded anaerobic digesterscitations
- 2020Optimisation of the removal conditions for heavy metals from watercitations
- 2019Corrigendum to
- 2018Synthesis of polyethylene/silica-silver nanocomposites with antibacterial properties by in situ polymerizationcitations
- 2016Phosphate removal and recovery from water using nanocomposite of immobilized magnetite nanoparticles on cationic polymercitations
- 2015The application of LCA to alternative methods for treating the organic fiber produced from autoclaving unsorted municipal solid wastecitations
- 2012Biological treatment of the organic fibre from the autoclaving of municipal solid wastes; preliminary resultscitations
- 2004Mechanism of textile metal dye biotransformation by Trametes versicolorcitations
- 2004Mechanism of textile metal dye biotransformation by Trametes versicolorcitations
Places of action
Organizations | Location | People |
---|
article
Mechanism of textile metal dye biotransformation by Trametes versicolor
Abstract
The biodegradation of Grey Lanaset G, which consists of a mixture of metal complexed dye, was studied. Experiments were carried out in a bioreactor with retained pellets of the fungus Trametes versicolor that was operated under conditions of laccase production. Although decolorization was highly efficient (90%), no direct relationship to extracellular enzyme was apparent. Moreover, the extracellular enzyme was found to be unable to degrade the dye in vitro. The process involves several steps. Thus, the initial adsorption of the dye and its transfer into cells is followed by breaking of the metal complex bond in the cells release of the components. The metal (Cr and Co) contents of the biomass and treated solutions, and their closer relationship to intracellular enzyme and degradation of the dye, confirm the initial hypothesis. © 2004 Elsevier Ltd. All rights reserved.