People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Wilson, Bp
Aalto University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Assessment of environmental sustainability of nickel required for mobility transitioncitations
- 2022Electrochemical Growth of Ag/Zn Alloys from Zinc Process Solutions and Their Dealloying Behaviorcitations
- 2022A New Hydrometallurgical Process for Metal Extraction from Electric Arc Furnace Dust Using Ionic Liquidscitations
- 2022Green and Controllable Preparation of Cu/Zn Alloys Using Combined Electrodeposition and Redox Replacementcitations
- 2022Targeted surface modification of Cu/Zn/Ag coatings and Ag/Cu particles based on sacrificial element selection by electrodeposition and redox replacementcitations
- 2021Cyclic voltammetry and potentiodynamic polarization studies of chalcopyrite concentrate in glycine mediumcitations
- 2021Biopolymeric Anticorrosion Coatings from Cellulose Nanofibrils and Colloidal Lignin Particlescitations
- 2020A sustainable two-layer lignin-anodized composite coating for the corrosion protection of high-strength low-alloy steelcitations
- 2020Investigation of the anticorrosion performance of lignin coatings after crosslinking with triethyl phosphate and their adhesion to a polyurethane topcoat
- 2019Modelling of silver anode dissolution and the effect of gold as impurity under simulated industrial silver electrorefining conditionscitations
- 2018From waste to valuable resource: Lignin as a sustainable anti-corrosion coatingcitations
- 2018A direct synthesis of platinum/nickel co-catalysts on titanium dioxide nanotube surface from hydrometallurgical-type process streamscitations
- 2018Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid systemcitations
- 2018Kinetic study and modelling of silver dissolution in synthetic industrial silver electrolyte as a function of electrolyte composition and temperaturecitations
- 2017Strongly reduced thermal conductivity in hybrid ZnO/nanocellulose thin filmscitations
- 2017Carbon Nanostructure Based Platform for Enzymatic Glutamate Biosensorscitations
- 2017Leaching of Sb from TROF furnace Doré slagcitations
- 2016Carbon nanotube-copper composites by electrodeposition on carbon nanotube fiberscitations
- 2006Formation of ultra-thin amorphous conversion films on zinc alloy coatingscitations
- 2002Investigating changes in corrosion mechanism induced by laser welding galvanised steel specimens using scanning vibrating electrode techniquecitations
Places of action
Organizations | Location | People |
---|
article
Selective reductive leaching of cobalt and lithium from industrially crushed waste Li-ion batteries in sulfuric acid system
Abstract
Recycling of valuable metals from secondary resources such as waste Li-ion batteries (LIBs) has recently attracted significant attention due to the depletion of high-grade natural resources and increasing interest in the circular economy of metals. In this article, the sulfuric acid leaching of industrially produced waste LIBs scraps with 23.6% cobalt (Co), 3.6% lithium (Li) and 6.2% copper (Cu) was investigated. The industrially produced LIBs scraps were shown to provide higher Li and Co leaching extractions compared to dissolution of corresponding amount of pure LiCoO2. In addition, with the addition of ascorbic acid as reducing agent, copper extraction showed decrease, opposite to Co and Li. Based on this, we propose a new method for the selective leaching of battery metals Co and Li from the industrially crushed LIBs waste at high solid/liquid ratio (S/L) that leaves impurities like Cu in the solid residue. Using ascorbic acid (C6H8O6) as reductant, the optimum conditions for LIBs leaching were found to be T = 80 °C, t = 90 min, [H2SO4] = 2 M, [C6H8O6] = 0.11 M and S/L = 200 g/L. This resulted in leaching efficiencies of 95.7% for Li and 93.8% for Co, whereas in contrast, Cu extraction was only 0.7%. Consequently, the proposed leaching method produces a pregnant leach solution (PLS) with high Li (7.0 g/L) and Co (44.4 g/L) concentration as well as a leach residue rich in Cu (up to 12 wt%) that is suitable as a feed fraction for primary or secondary copper production. ; Peer reviewed