Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Williams, Ian

  • Google
  • 4
  • 49
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Bottom‐Up Preparation of Phase‐Separated Polymersomes3citations
  • 2018Differential immunodominance hierarchy of CD8+ T-cell responses in HLA-B*2721citations
  • 2017Using choice architecture to exploit a university Distinct Urban Mine19citations
  • 2016Applying behavioural economics to exploit materials from university distinct urban minescitations

Places of action

Chart of shared publication
Durocastano, Aroa
1 / 1 shared
Rodriguezarco, Laura
1 / 1 shared
Ruizpérez, Lorena
1 / 1 shared
Battaglia, Giuseppe
1 / 2 shared
Almadhi, Safa
1 / 1 shared
Forth, Joe
1 / 2 shared
Cleaver, Victoria
1 / 1 shared
Shaw, Peter
2 / 2 shared
Pierron, Xavier
2 / 2 shared
Cleaver, V.
1 / 1 shared
Chart of publication period
2023
2018
2017
2016

Co-Authors (by relevance)

  • Durocastano, Aroa
  • Rodriguezarco, Laura
  • Ruizpérez, Lorena
  • Battaglia, Giuseppe
  • Almadhi, Safa
  • Forth, Joe
  • Cleaver, Victoria
  • Shaw, Peter
  • Pierron, Xavier
  • Cleaver, V.
OrganizationsLocationPeople

article

Using choice architecture to exploit a university Distinct Urban Mine

  • Cleaver, Victoria
  • Williams, Ian
  • Shaw, Peter
  • Pierron, Xavier
Abstract

There are widespread concerns regarding the potential future scarcity of ferrous and non-ferrous materials. However, there are already potentially rich reserves of secondary materials via high ownership of Electrical and Electronic Equipment (EEE) in economically-developed nations. Young people are particularly high consumers of EEE, thus university students and campuses may present an opportunity to harness this potential. University Distinct Urban Mines (DUM) may be used to exemplify how potential reserves of secondary metals may be exploited, and could contribute to the transition from a linear to a circular economy. This study aimed to evaluate small household appliances (SHA) DUM from a UK university, with the objectives to identify and quantify student households’ SHA ownership, WEEE recycling, stockpiling and discarding habits amongst student households, assess and evaluate the monetary potential of SHA DUM at UK level, and propose methods to exploit DUM for universities in the UK. To this purpose, a quantitative survey was undertaken to measure students’ ownership and discarding behaviour with respect to SHA. The amounts of ferrous and non-ferrous materials were then estimated and converted to monetary values from secondary materials market data to appraise the SHA DUM overall value. Thirty-five per cent of SHA are discarded in the general refuse. Broken personal care appliances (PCA) tend to be discarded due to hygiene and small size factors. When in working order, SHA tend to be equally reused, recycled or stockpiled. We conclude that a total of 189 tonnes of ferrous and non-ferrous materials were available via discarding or being stockpiled at the University of Southampton. Extrapolated to UK higher education level, discarded and stockpiled SHA represent a potential worth _USD 11 million. To initiate DUM exploitation within Higher Education campuses, we suggest improving users’ choice architecture by providing collection methods specific to broken SHA.

Topics