People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Gnecco, Enrico
Jagiellonian University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2024Nanoscale wear evolution on a polystyrene/poly (n-butyl methacrylate) blendcitations
- 2023Atomic-scale characterization of contact interfaces between thermally self-assembled Au islands and few-layer MoS2 surfaces on SiO2citations
- 2023Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientationcitations
- 2023Surface Crystallization of Barium Fresnoite Glass: Annealing Atmosphere, Crystal Morphology and Orientationcitations
- 2023Surface crystallization of barium fresnoite glass : annealing atmosphere, crystal morphology and orientationcitations
- 2021The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon filmscitations
- 2016Sub-nanometer resolution of an organic semiconductor crystal surface using friction force microscopy in watercitations
- 2015Surface rippling induced by periodic instabilities on a polymer surfacecitations
Places of action
Organizations | Location | People |
---|
article
The influence of Cr and Ni doping on the microstructure of oxygen containing diamond-like carbon films
Abstract
<p>Non-hydrogenated diamond-like carbon (DLC) films doped with metals and oxygen were deposited by direct current magnetron sputtering. The influence of chromium and nickel on the surface morphology, elemental composition, bonding structure, adhesion force, optical transmittance and nanohardness of the films was characterized by atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDX), multi-wavelength Raman spectroscopy, UV–VIS–NIR spectrophotometry and nanoindenter. The surface roughness was reduced with the addition of Cr (7.4 at. %) or Ni (8.9 at. %) into DLC films. The EDX measurements indicated that the addition of Cr increased the oxygen content by ~37%, while Ni reduced it by ~50%, compared to the oxygen doped DLC film. The microRaman analysis indicated that the G band shifted to a higher wavenumbers range, became narrower and the sp<sup>3</sup>/sp<sup>2</sup> sites fraction ratio decreased for the metals doped DLC films. The nanohardness values of the sputtered doped DLC films varied in the range of 4.5–7.6 GPa. It was observed that the Ni-DLC film showed the highest adhesion force value and was optically opaque.</p>