People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Kotakoski, Jani
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2024Scalable bottom-up synthesis of Co-Ni-doped graphene.citations
- 2024Probing the interaction range of electron beam-induced etching in STEM by a non-contact electron beam
- 2023Interface effects on titanium growth on graphenecitations
- 2023Creation of Single Vacancies in hBN with Electron Irradiationcitations
- 2023Revealing the influence of edge states on the electronic properties of PtSe 2citations
- 2022Indirect measurement of the carbon adatom migration barrier on graphenecitations
- 2021Carbon Nano-onions: Potassium Intercalation and Reductive Covalent Functionalizationcitations
- 2021The morphology of doubly-clamped graphene nanoribbons
- 2020Cluster Superlattice Membranescitations
- 2019Enhanced Tunneling in a Hybrid of Single-Walled Carbon Nanotubes and Graphenecitations
- 2017Progress in electronics and photonics with nanomaterialscitations
- 2017Progress in electronics and photonics with nanomaterialscitations
- 2014Nitrogen controlled iron catalyst phase during carbon nanotube growthcitations
- 2013Scaling properties of charge transport in polycrystalline graphenecitations
- 2013Defects in bilayer silica and graphene: common trends in diverse hexagonal two-dimensional systemscitations
- 2006Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubescitations
Places of action
Organizations | Location | People |
---|
document
Progress in electronics and photonics with nanomaterials
Abstract
Nanomaterials have been at the center of attraction for almost five decades as their contributions to different disciplines such as electronics, photonics and medicine are enormous. Various kinds of nanomaterials have been developed and are currently utilized in innumerable applications. Nevertheless, their simple realization and easy and efficient upscaling are topics under intense investigation. Innovative strategies have been adopted for nanomaterial synthesis and their usability. Here, we provide a brief overview on nanomaterials ranging from basic understanding of their structure-property relationship to advanced applications. This editorial covers various aspects about nanomaterials, which will be useful/attractive for beginners in the field of nanotechnology as well as for experts and for industrialists looking forward to exploit them for real world applications.