People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Teodoro, Orlando
Universidade Nova de Lisboa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (16/16 displayed)
- 2023Amorphous carbon thin filmscitations
- 2023The Role of Hydrogen Incorporation into Amorphous Carbon Films in the Change of the Secondary Electron Yieldcitations
- 2020Free-standing N-Graphene as conductive matrix for Ni(OH)2 based supercapacitive electrodescitations
- 2019Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensingcitations
- 2018Development of Au/CuO nanoplasmonic thin films for sensing applicationscitations
- 2016Surface modifications on as-grown boron doped CVD diamond films induced by the B2O3-ethanol-Ar systemcitations
- 2014Ion-plasma treatment of reed switch contactscitations
- 2013Amorphous Carbon Coatings: Temperature Effect on Secondary Electron Yield (SEY)
- 2013Study of SEY degradation of amorphous carbon coatings
- 2013Increase of secondary electron yield of amorphous carbon coatings under high vacuum conditionscitations
- 2012An upgraded TOF-SIMS VG Ionex IX23LS: Study on the negative secondary ion emission of III-V compound semiconductors with prior neutral cesium depositioncitations
- 2012TOF-SIMS study of cystine and cholesterol stonescitations
- 2009Characterisation of DLC Films Deposited Using Titanium Isopropoxide (TIPOT) at Different Flow Ratescitations
- 2006Characterisation of metal/mould interface on investment casting of γ-TiAlcitations
- 2005Evaluation of y2O3 as front layer of ceramic crucibles for vaccum induction melting of TiAl based alloys
- 2002Anomalous growth of Ba on Ag(111)citations
Places of action
Organizations | Location | People |
---|
article
Increase of secondary electron yield of amorphous carbon coatings under high vacuum conditions
Abstract
Electron cloud (e-cloud) is one of the major limitations for beam quality in modern particle accelerators. The macroscopic property which governs this phenomenon is the secondary electron yield (SEY) of a surface, defined as the number of emitted electrons per incident electron. SEY of inner surface walls must be less than 1.3 to prevent the formation of an e-cloud. Although most pure metals possess an SEY within this range, technical surfaces (i.e. those resulting from the necessary machining to produce vacuum parts) typically display much higher SEY. An elegant and effective solution to this problem is to deposit the carbon coating on these surfaces by magnetron sputtering. However, the first measurements performed at CERN revealed an increase of the SEY as a function of long term air exposure. Furthermore, we observed a rapid increase of the SEY of these samples whilst under high vacuum conditions. In order to determine the contaminant responsible for the observed ageing, as well as the ageing mechanism, the samples were exposed to various gases and vapours such as water vapour, H2, rotary pump oil vapour, etc. The results confirm that the vapour of rotary pump oils is responsible for exceptionally fast sample ageing. We also observed that high SEY samples usually have an increased surface concentration of oxygen. The possible ageing mechanisms are discussed.