Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kakushima, K.

  • Google
  • 2
  • 9
  • 64

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2012Effects of aluminum doping on lanthanum oxide gate dielectric films21citations
  • 2005Effects of low temperature annealing on the ultrathin La2O 3 gate dielectric; Comparison of post deposition annealing and post metallization annealing43citations

Places of action

Chart of shared publication
Iwai, H.
2 / 2 shared
Yang, B. L.
1 / 1 shared
Ahmet, P.
1 / 5 shared
Ng, J. A.
1 / 1 shared
Ohmi, S. I.
1 / 1 shared
Sugii, N.
1 / 1 shared
Kuroki, Y.
1 / 1 shared
Tsutsui, K.
1 / 1 shared
Hattori, T.
1 / 3 shared
Chart of publication period
2012
2005

Co-Authors (by relevance)

  • Iwai, H.
  • Yang, B. L.
  • Ahmet, P.
  • Ng, J. A.
  • Ohmi, S. I.
  • Sugii, N.
  • Kuroki, Y.
  • Tsutsui, K.
  • Hattori, T.
OrganizationsLocationPeople

article

Effects of aluminum doping on lanthanum oxide gate dielectric films

  • Iwai, H.
  • Yang, B. L.
  • Kakushima, K.
  • Ahmet, P.
Abstract

This work reports a novel method for improving the electrical properties of lanthanum gate oxide (La <sub>2</sub>O <sub>3</sub>) by using aluminum doping and rapid thermal annealing (RTA) techniques. In the bulk of the Al-doped La <sub>2</sub>O <sub>3</sub> film together with 600°C RTA, we found that the aluminum atoms were incorporated into the oxide network and the film was transformed into lanthanum aluminate complex oxide. At the interface, a thin Al <sub>2</sub>O <sub>3</sub> layer was formed. This interfacial Al <sub>2</sub>O <sub>3</sub> layer suppressed the out-diffusion of substrate Si, the formation of interfacial silicate layer and silicide bonds. These effects resulted in a significant reduction on the bulk and interface trap densities and hence the gate leakage current. © 2011 Elsevier Ltd. All rights reserved.

Topics
  • aluminium
  • Lanthanum
  • annealing
  • interfacial
  • silicide