People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Milčius, Darius
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2022On the structure of SbTeIcitations
- 2020Superhydrophilic functionalized graphene/fiberglass/epoxy laminates with high mechanical, impact and thermal performance and treated by plasmacitations
- 2019Black carbon-doped TiO2 films : synthesis, characterization and photocatalysiscitations
- 2018A new method of nanocrystalline nickel powder formation by magnetron sputtering on the water-soluble substratescitations
- 2017Hydrogen generation based on aluminum-water reaction for fuel cell applicationscitations
- 2017Stannate increases hydrogen evolution overpotential on rechargeable alkaline iron electrodescitations
- 2017Generation of hydrogen by the reaction between plasma modified aluminium and watercitations
- 2014Reaction of aluminum with water to produce hydrogen
- 2013The investigation of e-beam deposited titanium dioxide and calcium titanate thin filmscitations
- 2012Synthesis and characterization of multilayered GDC and SDC thin films deposited by e-beam technique
- 2012Substrate effects on formation and hydrogenation of Mg-Ni filmscitations
- 2011Scandium stabilized zirconium thin films formation by e-beam techniquecitations
- 2011The properties of scandium and cerium stabilized zirconium thin films formed by e-beam techniquecitations
- 2011Synthesis and characterization of GDC solid electrolytes obtained by solid state sintering of multilayer thin filmscitations
- 2011Influence of initial powder particle size on yttrium stabilized zirconium thin films formed by e-beam techniquecitations
- 2010A mechanically switchable metal-insulator transition in Mg2NiH4 discovers a strain sensitive, nanoscale modulated resistivity connected to a stacking faultcitations
- 2010The properties of gadolinium doped cerium oxide thin films formed evaporating nanopowder ceramic
- 2010Synthesis of gadolinium doped ceria solid electrolyte by solid state reactions of CeO2/Gd2O3 multilayer thin films
- 2009Porosity evaluation of TiO2 thin films deposited using pulsed DC-magnetron sputtering
- 2009The effects of dynamic structural transformations on hydrogenation properties of Mg and MgNi thin filmscitations
- 2009Titanium oxide thin films synthesis by pulsed – DC magnetron sputteringcitations
- 2009The properties of samarium doped ceria oxide thin films grown by e-beam deposition techniquecitations
- 2008Hydrogen storage in Mg-based nanocrystalline metal hydrides
- 2008Reactive pulsed - dc magnetron sputtering of Cr2O3 thin films
- 2007Failure analysis by indentation test of electrodeposited nanocrystalline CO-W and FE-W thin films
- 2007Influence of ion irradiation effects on the hydriding behavior of nanocrystalline Mg–Ni filmscitations
- 2007Formation of gadolinium doped ceria oxide thin films by electron beam deposition
- 2005Hydrogen storage in the bubbles formed by high-flux ion implantation in thin Al filmscitations
- 2005Synthesis of Mg(AlH4)(2) in bilayer Mg/Al thin films under plasma immersion hydrogen ion implantation and thermal desorption processescitations
Places of action
Organizations | Location | People |
---|
article
Titanium oxide thin films synthesis by pulsed – DC magnetron sputtering
Abstract
Titanium oxide thin films (1–4 μm) were deposited on the porous Hastelloy-X substrates using the pulsed – DC magnetron sputtering technique and characterized by X–ray diffraction (XRD) and scanning electron microscopy (SEM) methods. Firstly, the films were deposited at different distances between the magnetron and the substrate, as magnetron current and pressure in the deposition chamber were constant. The distance between the magnetron and the substrate was changed from 3 cm to 7 cm, and the deposition rate varied between 10.1 nm/min to 6.0 nm/min. Secondly, pressure influence for the deposition rate was investigated. The deposition rate decreased nearly 15% with the decrease of oxygen pressure from 1.3 to 6.0 Pa. Finally, the influence of the bias (applied to the substrate for the increase of deposition rate) on thin films phase and microstructure was investigated. The experimental results showed that formation of pure titanium oxide thin films was observed in all experimental cases. Only crystallite sizes and orientation were changed. The results showed that there is a possibility to change porosity and uniformity of the growing film by changing oxygen partial pressure during deposition or bias application to the substrate. The existence of columnar boundaries and nanocrystalline structure in the films was observed.