People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Oliveira, Msa
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2013Shape memory polyurethanes reinforced with carbon nanotubescitations
- 2013The effect of carbon nanotubes on viscoelastic behaviour of biomedical grade ultra-high molecular weight polyethylenecitations
- 2011Enhanced UHMWPE Reinforced with MWCNT through Mechanical Ball-Millingcitations
- 2011The Use of Taguchi Technique to Optimize the Compression Moulding Cycle to Process Acetabular Cup Componentscitations
- 2011Performance of nanocrystalline diamond coated micromolding tools
- 2011Thermo-Mechanical Behaviour of Ultrahigh Molecular Weight Polyethylene-Carbon Nanotubes Composites under Different Cooling Techniquescitations
- 2010Tribological characterisation of carbon nanotubes/ultrahigh molecular weight polyethylene composites: the effect of sliding distancecitations
- 2010In vitro studies of multiwalled carbon nanotube/ultrahigh molecular weight polyethylene nanocomposites with osteoblast-like MG63 cellscitations
- 2009Tribology of biocompositescitations
- 2008Time-modulated chemical vapour deposition diamonf on mould making 2738 steelcitations
- 2008Dynamic Mechanical Analysis of Multi-Walled Carbon Nanotube/HDPE Compositescitations
- 2007Mechanical properties of high density polyethylene/carbon nanotube compositescitations
Places of action
Organizations | Location | People |
---|
article
Time-modulated chemical vapour deposition diamonf on mould making 2738 steel
Abstract
The mould making industry is known to be worldwide in rapid expansion, due to the fact that polymeric based materials are increasingly replacing conventional used ones, thus placing enormous challenges on production methods and tools. The application of chemical vapour deposition (CVD) diamond coatings onto moulds can be a promising tool to improve properties such as adhesion, reduction on abrasion and corrosive wear, filling and releasing problems or even tool thermal fatigue. Despite its potential for use in these types of applications, diamond coating on steel substrates is not problem-free and a few critical problems such as adhesion to steel, process temperatures and film property control, remain to be solved. This paper reports on experimental results obtained from an investigation focusing on the deposition of diamond coatings onto steel substrates using the new time-modulated chemical vapour deposition process. Furthermore, the technique is evaluated in order to establish its suitability for application in mould production tools.