Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Neto, Vf

  • Google
  • 2
  • 3
  • 5

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2011Performance of nanocrystalline diamond coated micromolding toolscitations
  • 2008Time-modulated chemical vapour deposition diamonf on mould making 2738 steel5citations

Places of action

Chart of shared publication
Oliveira, Msa
2 / 12 shared
Gracio, J.
2 / 19 shared
Ali, N.
1 / 10 shared
Chart of publication period
2011
2008

Co-Authors (by relevance)

  • Oliveira, Msa
  • Gracio, J.
  • Ali, N.
OrganizationsLocationPeople

article

Time-modulated chemical vapour deposition diamonf on mould making 2738 steel

  • Oliveira, Msa
  • Ali, N.
  • Gracio, J.
  • Neto, Vf
Abstract

The mould making industry is known to be worldwide in rapid expansion, due to the fact that polymeric based materials are increasingly replacing conventional used ones, thus placing enormous challenges on production methods and tools. The application of chemical vapour deposition (CVD) diamond coatings onto moulds can be a promising tool to improve properties such as adhesion, reduction on abrasion and corrosive wear, filling and releasing problems or even tool thermal fatigue. Despite its potential for use in these types of applications, diamond coating on steel substrates is not problem-free and a few critical problems such as adhesion to steel, process temperatures and film property control, remain to be solved. This paper reports on experimental results obtained from an investigation focusing on the deposition of diamond coatings onto steel substrates using the new time-modulated chemical vapour deposition process. Furthermore, the technique is evaluated in order to establish its suitability for application in mould production tools.

Topics
  • impedance spectroscopy
  • steel
  • fatigue
  • chemical vapor deposition