People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Leighton, Timothy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2019Group behavioral responses of juvenile common carp (Cyprinus carpio) to pulsed tonal stimuli in the presence of masking noisecitations
- 2017Ultrasonic activated stream cleaning of a range of materials
- 2016An activated fluid stream – new techniques for cold water cleaningcitations
- 2016A comparison of ultrasonically activated water stream and ultrasonic bath immersion cleaning of railhead leaf-film contaminantcitations
- 2015The acoustic bubble: oceanic bubble acoustics and ultrasonic cleaningcitations
- 2014Bubble acoustics
- 2013A new approach to ultrasonic cleaningcitations
- 2010Cluster collapse in a cylindrical cell: correlating multibubble sonoluminescence, acoustic pressure, and erosioncitations
- 2007Studies into the detection of buried objects (particularly optical fibres) in saturated sediment. Part 2: design and commissioning of test tank
- 2007Studies into the detection of buried objects (particularly optical fibres) in saturated sediment. Part 5: an acousto-optic detection system
- 2007Cavitation, shockwaves and electrochemistry: an experimental and theoretical approach to a complex environment
Places of action
Organizations | Location | People |
---|
article
An activated fluid stream – new techniques for cold water cleaning
Abstract
Electrochemical, acoustic and imaging techniques are used to characterise surface cleaning with particular emphasis on the understanding of the key phenomena relevant to surface cleaning. A range of novel techniques designed to enhance and monitor the effective cleaning of a solid/liquid interface is presented. Among the techniques presented, mass transfer of material to a sensor embedded in a surface is demonstrated to be useful in the further exploration of ultrasonic cleaning of high aspect ratio micropores. In addition the effect of micropore size on the cleaning efficacy is demonstrated. The design and performance of a new cleaning system reliant on the activation of bubbles within a free flowing stream is presented. This device utilised acoustic activation of bubbles within the stream and at a variety of substrates. Finally, a controlled bubble swarm is generated in the stream using electrolysis, and its effect on both acoustic output and cleaning performance are compared to the case when no bubbles are added. This will demonstrate the active role that the electrochemically generated bubble swarm can have in extending the spatial zone over which cleaning is achieved.