People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Raum, Kay
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (14/14 displayed)
- 2024The respective and dependent effects of scattering and bone matrix absorption on ultrasound attenuation in cortical bone.citations
- 2021Anisotropic elastic properties of human cortical bone tissue inferred from inverse homogenization and resonant ultrasound spectroscopycitations
- 2020Cortical thinning and accumulation of large cortical pores in the tibia reflect local structural deterioration of the femoral neckcitations
- 2019Large cortical bone pores in the tibia are associated with proximal femur strengthcitations
- 2019Acoustic diffusion constant of cortical bone: Numerical simulation study of the effect of pore size and pore density on multiple scattering.citations
- 2016Multimodal correlative investigation of the interplaying micro-architecture, chemical composition and mechanical properties of human cortical bone tissue reveals predominant role of fibrillar organization in determining microelastic tissue properties.citations
- 2015Distribution of mesoscale elastic properties and mass density in the human femoral shaft.citations
- 2014Ultrasound to assess bone quality.citations
- 20143D Raman mapping of the collagen fibril orientation in human osteonal lamellae.citations
- 2014On the elastic properties of mineralized turkey leg tendon tissue: multiscale model and experiment.citations
- 2014Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation.citations
- 2014Ultrasound biomicroscopy (UBM) and scanning acoustic microscopy (SAM) for the assessment of hernia mesh integration: a comparison to standard histology in an experimental model.citations
- 2014Multiscale, Converging Defects of Macro-Porosity, Microstructure and Matrix Mineralization Impact Long Bone Fragility in NF1citations
- 2009Assessment of Microelastic Properties of Bone Using Scanning Acoustic Microscopy: A Face-to-Face Comparison with Nanoindentation
Places of action
Organizations | Location | People |
---|
article
Modeling of femoral neck cortical bone for the numerical simulation of ultrasound propagation.
Abstract
Quantitative ultrasound assessment of the cortical compartment of the femur neck (FN) is investigated with the goal of achieving enhanced fracture risk prediction. Measurements at the FN are influenced by bone size, shape and material properties. The work described here was aimed at determining which FN material properties have a significant impact on ultrasound propagation around 0.5 MHz and assessing the relevancy of different models. A methodology for the modeling of ultrasound propagation in the FN, with a focus on the modeling of bone elastic properties based on scanning acoustic microscopy data, is introduced. It is found that the first-arriving ultrasound signal measured in through-transmission at the FN is not influenced by trabecular bone properties or by the heterogeneities of the cortical bone mineralized matrix. In contrast, the signal is sensitive to variations in cortical porosity, which can, to a certain extent, be accounted for by effective properties calculated with the Mori-Tanaka method.