Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Niu, Xudong

  • Google
  • 2
  • 8
  • 18

University of Bristol

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2021Superposition model of mode shapes composed of travelling torsional guided waves excited by multiple circular transducer arrays in pipes18citations
  • 2018Autonomous ice protection combining ultrasonic guided waves and electrothermal systemscitations

Places of action

Chart of shared publication
Marques, Hugo R.
1 / 1 shared
Tee, Kong Fah
1 / 3 shared
Gan, T. H.
1 / 4 shared
Dhutti, Anuj
1 / 1 shared
Duan, W.
1 / 1 shared
Kourmpetis, M.
1 / 1 shared
Kostan, M.
1 / 2 shared
Kanfoud, J.
1 / 5 shared
Chart of publication period
2021
2018

Co-Authors (by relevance)

  • Marques, Hugo R.
  • Tee, Kong Fah
  • Gan, T. H.
  • Dhutti, Anuj
  • Duan, W.
  • Kourmpetis, M.
  • Kostan, M.
  • Kanfoud, J.
OrganizationsLocationPeople

article

Superposition model of mode shapes composed of travelling torsional guided waves excited by multiple circular transducer arrays in pipes

  • Marques, Hugo R.
  • Tee, Kong Fah
  • Niu, Xudong
Abstract

In pipe inspection using ultrasonic guided wave technique, the current commercial transmitters are designed for the unidirectional guided wave excitation using multiple circular piezoelectric transducers arrays in the axial direction. However, the source with many individual transducer elements in arrays has difficulty in achieving an axisymmetric loading perfectly for defect detection. Therefore, a quasi-axisymmetric wave is formed due to many undesired wave modes are launched instead of a pure axisymmetric wave at a given excitation frequency. In this paper, a realistic superposition model of axial multiple transducer arrays is proposed. The model has many potential applications; one example is investigating the source influence on the generated quasi-axisymmetric wave effect. The analytical model is employed to achieve the predictions for investigating a transmitter's influence for the unidirectional enhancement of torsional T(0,1) guided wave mode excitation in a pipe inspection system composing of three piezoelectric transducer ring arrays. The excitation function with variable power levels among transducers in arrays is also introduced. The predictive results using the analytical model for the distribution of circumferential displacement amplitudes over time are verified using the finite element method and a CLV-3D laser vibrometry measurement on a 219.1-mm-outer-diameter steel pipe without defect. A comparison between calculated and test results has been analysed quantitatively. The respective results are in good agreement. Thus, predictions for the superposed wavefield can be used to analyse the realistic characterisation of the excitation function in axial multiple transducer arrays. Additionally, a sensitivity analysis for part-circumferential crack detection using the quasi-axisymmetric torsional modes generated is also evaluated using finite element modelling.

Topics
  • impedance spectroscopy
  • crack
  • steel
  • ultrasonic
  • finite element analysis