People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomsen, Erik Vilain
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2023Contrast-enhanced ultrasound imaging using capacitive micromachined ultrasonic transducerscitations
- 2022A Hand-Held 190+190 Row–Column Addressed CMUT Probe for Volumetric Imagingcitations
- 2021Polysilicon on Quartz Substrate for Silicide Based Row-Column CMUTs
- 2021Analytical Deflection Profiles and Pull-In Voltage Calculations of Prestressed Electrostatic Actuated MEMS Structurescitations
- 20213D printed calibration micro-phantoms for super-resolution ultrasound imaging validationcitations
- 2020Pull-in Analysis of CMUT Elementscitations
- 2020Large Scale High Voltage 192+192 Row-Column Addressed CMUTs Made with Anodic Bondingcitations
- 2020Electrical Insulation of CMUT Elements Using DREM and Lappingcitations
- 2020Electrical Insulation of CMUT Elements Using DREM and Lappingcitations
- 2019Imaging Performance for Two Row–Column Arrayscitations
- 2019188+188 Row–Column Addressed CMUT Transducer for Super Resolution Imagingcitations
- 2019CMUT Electrode Resistance Design: Modelling and Experimental Verification by a Row-Column Arraycitations
- 20193D Printed Calibration Micro-phantoms for Validation of Super-Resolution Ultrasound Imagingcitations
- 2018Probe development of CMUT and PZT row-column-addressed 2-D arrayscitations
- 2018Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lenscitations
- 2018Design of a novel zig-zag 192+192 Row Column Addressed Array Transducer: A simulation study.citations
- 2017Combined Colorimetric and Gravimetric CMUT Sensor for Detection of Phenylacetonecitations
- 2017Transmitting Performance Evaluation of ASICs for CMUT-Based Portable Ultrasound Scanners
- 2017Output Pressure and Pulse-Echo Characteristics of CMUTs as Function of Plate Dimensionscitations
- 20163-D Vector Flow Using a Row-Column Addressed CMUT Arraycitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row–Column-Addressed Arrays With Integrated Apodization. Part I: Apodization Design and Line Element Beamformingcitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodization:Part II: Transducer Fabrication and Experimental Resultscitations
- 20153-D Imaging Using Row-Column-Addressed Arrays With Integrated Apodizationcitations
- 2011Fusion bonding of silicon nitride surfacescitations
- 2010Touch mode micromachined capacitive pressure sensor with signal conditioning electronics
- 2009Highly sensitive micromachined capacitive pressure sensor with reduced hysteresis and low parasitic capacitancecitations
- 2008Giant Geometrically Amplified Piezoresistance in Metal-Semiconductor Hybrid Resistorscitations
Places of action
Organizations | Location | People |
---|
article
Increasing the field-of-view of row–column-addressed ultrasound transducers: implementation of a diverging compound lens
Abstract
The purpose of this work is to investigate compound lenses for row-column-addressed (RCA) ultrasound transducers for increasing the field-of-view (FOV) to a curvilinear volume region, while retaining a flat sole to avoid trapping air between the transducer sole and the patient, which would otherwise lead to unwanted reflections. The primary motivation behind this research is to develop a RCA ultrasound transducer for abdominal or cardiac imaging, where a curvilinear volume region is a necessity. RCA transducers provide 3-D ultrasound imaging with fewer channels than fully-addressed 2-D arrays (2N instead of N<sub>2</sub>), but they have inherently limited FOV. By increasing the RCA FOV, these transducers can be used for the same applications as fully-addressed transducers while retaining the same price range as conventional 2-D imaging due to the lower channel count. Analytical and finite element method (FEM) models were employed to evaluate design options. Composite materials were developed by loading polymers with inorganic powders to satisfy the corresponding speed of sound and specific acoustical impedance requirements. A Bi<sub>2</sub>O<sub>3</sub> powder with a density of 8.9 g/cm<sub>3</sub> was used to decrease the speed of sound of a room temperature vulcanizing (RTV) silicone, RTV615, from 1.03 mm=μs to 0.792 mm=μs. Using micro-balloons in RTV615 and a urethane, Hapflex 541, their speeds of sound were increased from 1.03 mm=μs to 1.50 mm=μs and from 1.52 mm=μs to 1.93 mm=μs, respectively. A diverging add-on lens was fabricated of a Bi<sub>2</sub>O<sub>3</sub> loaded RTV615 and an unloaded Hapflex 541. The lens was tested using a RCA probe, and a FOV of 32.2° was measured from water tank tests, while the FEM model yielded 33.4°. A wire phantom with 0.15 mm diameter wires was imaged at 3 MHz down to a depth of 14 cm using a synthetic aperture imaging sequence with single element transmissions. The beamformed image showed that wires outside the array footprint were visible, demonstrating the increased FOV.