People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Banerjee, Sauvik
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Guided Wave-Based Early-Stage Debonding Detection and Assessment in Stiffened Panel Using Machine Learning With Deep Auto-Encoded Featurescitations
- 2022Semi-Analytical Finite Element Method for the Analysis of Guided Wave Dispersion in the Pre-stressed Composite Platescitations
- 2022Low-velocity impact source localization in a composite sandwich structure using a broadband piezoelectric sensor networkcitations
- 2019Guided wave based nondestructive analysis of localized inhomogeneity effects in an advanced sandwich composite structurecitations
- 2019Effects of debonding on Lamb wave propagation in a bonded composite structure under variable temperature conditionscitations
- 2019Damage-induced acoustic emission source monitoring in a honeycomb sandwich composite structurecitations
- 2016Identification of disbond and high density core region in a honeycomb composite sandwich structure using ultrasonic guided wavescitations
- 2016Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density corecitations
- 2016Ultrasonic guided wave propagation and disbond identification in a honeycomb composite sandwich structure using bonded piezoelectric wafer transducerscitations
- 2016Study of guided wave propagation in a honeycomb composite sandwich plate in presence of a high-density core region using surface-bonded piezoelectric transducers
- 2014Wave Propagation in a Honeycomb Composite Sandwich Structure in the Presence of High-Density Core Using Bonded PZT-Sensorscitations
Places of action
Organizations | Location | People |
---|
article
Guided wave propagation in a honeycomb composite sandwich structure in presence of a high density core
Abstract
<p>A coordinated theoretical, numerical and experimental study is carried out in an effort to interpret the characteristics of propagating guided Lamb wave modes in presence of a high-density (HD) core region in a honeycomb composite sandwich structure (HCSS). Initially, a two-dimensional (2D) semi-analytical model based on the global matrix method is used to study the response and dispersion characteristics of the HCSS with a soft core. Due to the complex structural characteristics, the study of guided wave (GW) propagation in HCSS with HD-core region inherently poses many challenges. Therefore, a numerical simulation of GW propagation in the HCSS with and without the HD-core region is carried out, using surface-bonded piezoelectric wafer transducer (PWT) network. From the numerical results, it is observed that the presence of HD-core significantly decreases both the group velocity and the amplitude of the received GW signal. Laboratory experiments are then conducted in order to verify the theoretical and numerical results. A good agreement between the theoretical, numerical and experimental results is observed in all the cases studied. An extensive parametric study is also carried out for a range of HD-core sizes and densities in order to study the effect due to the change in size and density of the HD zone on the characteristics of propagating GW modes. It is found that the amplitudes and group velocities of the GW modes decrease with the increase in HD-core width and density.</p>