People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hill, Martyn
University of Southampton
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2021Surface temperature condition monitoring methods for aerospace turbomachinery: exploring the use of ultrasonic guided wavescitations
- 2019Acoustofluidic particle steeringcitations
- 2014Acoustic devices for particle and cell manipulation and sensingcitations
- 2013The effect of ultrasound-related stimuli on cell viability in microfluidic channelscitations
- 2013Planar particle trapping and manipulation with ultrasonic transducer arrays
- 2012Mechanism of co-nanoprecipitation of organic actives and block copolymers in a microfluidic environmentcitations
- 2011Continuous-flow production of polymeric micelles in microreactors: experimental and computational analysiscitations
- 2008Performance of a quarter-wavelength particle concentratorcitations
- 2007Microfluidic system for cell transfection using sonoporation and ultrasonic particle manipulation
- 2004Acoustic power output measurements for thick-film PZT transducerscitations
- 2004An ultrasonic transducer array for velocity measurement in underwater vehiclescitations
Places of action
Organizations | Location | People |
---|
article
Performance of a quarter-wavelength particle concentrator
Abstract
A series of devices have been investigated which use acoustic radiation forces to concentrate micron sized particles. These multi-layered resonators use a quarter wavelength resonance in order to position an acoustic pressure node close to the top surface of a fluid layer such that particles migrate towards this surface. As flow through devices, it is then possible to collect a concentrate of particulates by drawing off the particle stream and separating it from the clarified fluid and so can operate continuously as opposed to batch processes such as centrifugation. The methods of construction are described which include a micro-fabricated, wet-etched device and a modular device fabricated using a micro-mill. These use silicon and macor, a machinable glass ceramic, as a carrier layer between the transducer and fluid channel, respectively. Simulations using an acoustic impedance transfer model are used to determine the influence of various design parameters on the acoustic energy density within the fluid layer and the nodal position. Concentration tests have shown up to 4.4-, 6.0- and 3.2 fold increases in concentration for 9, 3 and 1 ?m diameter polystyrene particles, respectively. The effect of voltage and fluid flow rates on concentration performance is investigated and helps demonstrate the various factors which determine the increase in concentration possible.<br/>