People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Van Aert, Sandra
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (18/18 displayed)
- 2024Investigation of the octahedral network structure in formamidinium lead bromide nanocrystals by low-dose scanning transmission electron microscopycitations
- 2024Single-Layered Imine-Linked Porphyrin-Based Two-Dimensional Covalent Organic Frameworks Targeting CO<sub>2</sub> Reductioncitations
- 2024Stabilizing Perovskite Pb(Mg<sub>0.33</sub>Nb<sub>0.67</sub>)O<sub>3</sub>-PbTiO<sub>3</sub> Thin Films by Fast Deposition and Tensile Mismatched Growth Templatecitations
- 2023Low-Dose 4D-STEM Tomography for Beam-Sensitive Nanocompositescitations
- 2023Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditionscitations
- 2023Exploring the effects of graphene and temperature in reducing electron beam damagecitations
- 2022Element specific atom counting at the atomic scale by combining high angle annular dark field scanning transmission electron microscopy and energy dispersive X-ray spectroscopycitations
- 2022Atomic-scale detection of individual lead clusters confined in Linde Type A zeolitescitations
- 2021Interface Pattern Engineering in Core-Shell Upconverting Nanocrystals: Shedding Light on Critical Parameters and Consequences for the Photoluminescence Properties
- 2020Alloy CsCd x Pb 1- x Br 3 Perovskite Nanocrystals:The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2020Alloy CsCd x Pb1-x Br3 Perovskite Nanocrystals: The Role of Surface Passivation in Preserving Composition and Blue Emissioncitations
- 2017One step toward a new generation of C-MOS compatible oxide PN junctionscitations
- 2016Long-range domain structure and symmetry engineering by interfacial oxygen octahedral coupling at heterostructure interfacecitations
- 2016Engineering properties by long range symmetry propagation initiated at perovskite heterostructure interface
- 2015Determination of the atomic width of an APB in ordered CoPt using quantified HAADF-STEMcitations
- 2014Lattice deformations in quasi-dynamic strain glass visualised and quantified by aberration corrected electron microscopycitations
- 2012Exit wave reconstruction from focal series of HRTEM images, single crystal XRD and total energy studies on Sb xWO 3+y (x ~ 0.11)citations
- 2009Effect of amorphous layers on the interpretation of restored exit wavescitations
Places of action
Organizations | Location | People |
---|
article
Fast generation of calculated ADF-EDX scattering cross-sections under channelling conditions
Abstract
Advanced materials often consist of multiple elements which are arranged in a complicated structure. Quantitative scanning transmission electron microscopy is useful to determine the composition and thickness of nanostructures at the atomic scale. However, significant difficulties remain to quantify mixed columns by comparing the resulting atomic resolution images and spectroscopy data with multislice simulations where dynamic scattering needs to be taken into account. The combination of the computationally intensive nature of these simulations and the enormous amount of possible mixed column configurations for a given composition indeed severely hamper the quantification process. To overcome these challenges, we here report the development of an incoherent non-linear method for the fast prediction of ADF-EDX scattering cross-sections of mixed columns under channelling conditions. We first explain the origin of the ADF and EDX incoherence from scattering physics suggesting a linear dependence between those two signals in the case of a high-angle ADF detector. Taking EDX as a perfect incoherent reference mode, we quantitatively examine the ADF longitudinal incoherence under different microscope conditions using multislice simulations. Based on incoherent imaging, the atomic lensing model previously developed for ADF is now expanded to EDX, which yields ADF-EDX scattering cross-section predictions in good agreement with multislice simulations for mixed columns in a core–shell nanoparticle and a high entropy alloy. The fast and accurate prediction of ADF-EDX scattering cross-sections opens up new opportunities to explore the wide range of ordering possibilities of heterogeneous materials with multiple elements.