Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Karnthaler, H. Peter

  • Google
  • 3
  • 7
  • 1

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2024Probing the interaction range of electron beam-induced etching in STEM by a non-contact electron beamcitations
  • 2022In situ STEM analysis of electron beam induced chemical etching of an ultra-thin amorphous carbon foil by oxygen during high resolution scanning1citations
  • 2005Martensitic phase transformations of bulk nanocrystalline NiTi alloyscitations

Places of action

Chart of shared publication
Kotakoski, Jani
1 / 16 shared
Rentenberger, Christian
2 / 46 shared
Gammer, Christoph
1 / 40 shared
Noisternig, Stefan Manuel
2 / 2 shared
Waitz, Thomas
1 / 9 shared
Fischer, Franz Dieter
1 / 19 shared
Antretter, Thomas
1 / 37 shared
Chart of publication period
2024
2022
2005

Co-Authors (by relevance)

  • Kotakoski, Jani
  • Rentenberger, Christian
  • Gammer, Christoph
  • Noisternig, Stefan Manuel
  • Waitz, Thomas
  • Fischer, Franz Dieter
  • Antretter, Thomas
OrganizationsLocationPeople

article

In situ STEM analysis of electron beam induced chemical etching of an ultra-thin amorphous carbon foil by oxygen during high resolution scanning

  • Rentenberger, Christian
  • Karnthaler, H. Peter
  • Noisternig, Stefan Manuel
Abstract

<p>Support foils for (scanning) transmission electron microscopy ((S)TEM) samples are commonly amorphous carbon foils. State of the art (S)TEM high resolution imaging methods use ultra-thin carbon foils of only a few nm thickness, especially for imaging beam sensitive materials with low acceleration voltages and electron fluxes. In this study we analyze in situ the effect of chemical etching on a 2 nm amorphous carbon foil due to residual oxygen and by leaking in oxygen into the microscope column. We vary the vacuum level on a Nion UltraStem 100 between ultra high vacuum and that typical in TEM. This enables us to carry out a systematic investigation of chemical etching as function of both, oxygen pressure and electron flux. In addition the results of chemical etching are compared with those of sputtering from knock-on damage leading to the conclusion that chemical etching is the important cause for carbon removal from an amorphous foil at low oxygen pressures and low electron fluxes. We observe that the electron flux dependency using high resolution scanning conditions differs from the case of a resting electron beam. To interpret the results of chemical etching a scanning etching model is proposed that takes care of the specific conditions of STEM.</p>

Topics
  • impedance spectroscopy
  • amorphous
  • Carbon
  • Oxygen
  • transmission electron microscopy
  • etching