People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Karnthaler, H. Peter
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
- 2024Probing the interaction range of electron beam-induced etching in STEM by a non-contact electron beam
- 2022In situ STEM analysis of electron beam induced chemical etching of an ultra-thin amorphous carbon foil by oxygen during high resolution scanningcitations
- 2005Martensitic phase transformations of bulk nanocrystalline NiTi alloys
Places of action
Organizations | Location | People |
---|
article
In situ STEM analysis of electron beam induced chemical etching of an ultra-thin amorphous carbon foil by oxygen during high resolution scanning
Abstract
<p>Support foils for (scanning) transmission electron microscopy ((S)TEM) samples are commonly amorphous carbon foils. State of the art (S)TEM high resolution imaging methods use ultra-thin carbon foils of only a few nm thickness, especially for imaging beam sensitive materials with low acceleration voltages and electron fluxes. In this study we analyze in situ the effect of chemical etching on a 2 nm amorphous carbon foil due to residual oxygen and by leaking in oxygen into the microscope column. We vary the vacuum level on a Nion UltraStem 100 between ultra high vacuum and that typical in TEM. This enables us to carry out a systematic investigation of chemical etching as function of both, oxygen pressure and electron flux. In addition the results of chemical etching are compared with those of sputtering from knock-on damage leading to the conclusion that chemical etching is the important cause for carbon removal from an amorphous foil at low oxygen pressures and low electron fluxes. We observe that the electron flux dependency using high resolution scanning conditions differs from the case of a resting electron beam. To interpret the results of chemical etching a scanning etching model is proposed that takes care of the specific conditions of STEM.</p>