Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Massabuau, Fcp

  • Google
  • 19
  • 92
  • 493

University of Strathclyde

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024Constant Photocurrent Method to Probe the Sub‐Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α‐Ga<sub>2</sub>O<sub>3</sub>5citations
  • 2024Constant Photocurrent Method to Probe the Sub-Bandgap Absorption in Wide Bandgap Semiconductor Films: The Case of α-Ga 2 O 3citations
  • 2021Defect structures in (001) zincblende GaN/3CSiC nucleation layers15citations
  • 2021Defect structures in (001) zincblende GaN/3C-SiC nucleation layers15citations
  • 2021Directly correlated microscopy of trench defects in InGaN quantum wells12citations
  • 2020Piezoelectric III-V and II-VI semiconductors1citations
  • 2020Integrated wafer scale growth of single crystal metal films and high quality graphene32citations
  • 2020Dislocations as channels for the fabrication of sub-surface porous GaN by electrochemical etching30citations
  • 2019Investigation of MOVPE-grown zincblende GaN nucleation layers on 3CSiC/Si substrates7citations
  • 2019Thick adherent diamond films on AlN with low thermal barrier resistance60citations
  • 2019Low temperature growth and optical properties of α-Ga2O3 deposited on sapphire by plasma enhanced atomic layer deposition48citations
  • 2017Mechanisms preventing trench defect formation in InGaN/GaN quantum well structures using hydrogen during GaN barrier growthcitations
  • 2017X-ray diffraction analysis of cubic zincblende III-nitridescitations
  • 2017Dislocations in AlGaN: core structure, atom segregation, and optical properties38citations
  • 2014Structure and strain relaxation effects of defects in InxGa1-xN epilayers42citations
  • 2014Structure and strain relaxation effects of defects in In x Ga 1-x N epilayerscitations
  • 2013Correlations between the morphology and emission properties of trench defects in InGaN/GaN quantum wells37citations
  • 2012Morphological, structural, and emission characterization of trench defects in InGaN/GaN quantum well structures86citations
  • 2011The effects of Si doping on dislocation movement and tensile stress in GaN films65citations

Places of action

Chart of shared publication
Reynolds, Steve
1 / 17 shared
Jarman, John
1 / 1 shared
Chalker, Paul
1 / 8 shared
Barr, Kristopher
1 / 2 shared
Roberts, Joseph
1 / 12 shared
Nicol, David
1 / 2 shared
Roberts, Jw
1 / 1 shared
Jarman, Jj
1 / 1 shared
Barr, K.
1 / 1 shared
Reynolds, S.
1 / 1 shared
Nicol, D.
1 / 2 shared
Chalker, Pr
1 / 3 shared
Kappers, Menno J.
2 / 13 shared
Frentrup, Martin
4 / 19 shared
Lee, Lok Yi
2 / 3 shared
Vacek, Petr
3 / 7 shared
Wallis, David J.
2 / 9 shared
Oliver, Rachel A.
6 / 30 shared
Groger, Roman
1 / 1 shared
Wallis, Dj
2 / 12 shared
Lee, Ly
1 / 3 shared
Kappers, Mj
4 / 16 shared
Gröger, Roman
1 / 1 shared
Oliver, R. A.
5 / 18 shared
Kappers, M. J.
5 / 20 shared
Ohanlon, T. J.
1 / 1 shared
Bao, A.
1 / 2 shared
Calahorra, Yonatan
1 / 7 shared
Brennen, Barry
1 / 1 shared
Veigang-Radulescu, Vlad-Petru
1 / 3 shared
Burton, Oliver J.
1 / 9 shared
Pollard, Andrew J.
1 / 9 shared
Hofmann, Stephan
1 / 46 shared
Zhu, Tongtong
1 / 5 shared
Kumar, R. Vasant
1 / 6 shared
Liu, Yingjun
1 / 1 shared
Springbett, Helen P.
1 / 1 shared
Griffin, Peter H.
1 / 1 shared
Pomeroy, James W.
1 / 9 shared
Cuenca, Jerome
1 / 4 shared
Mandal, Soumen
1 / 13 shared
Batten, Tim
1 / 4 shared
Yuan, Chao
1 / 4 shared
Williams, Oliver A.
1 / 11 shared
Kuball, Martin
1 / 11 shared
Bland, Henry
1 / 4 shared
Morgan, David
1 / 10 shared
Wallis, David
1 / 13 shared
Oliver, Rachel
2 / 16 shared
Thomas, Evan
1 / 4 shared
Gibbon, J. T.
1 / 1 shared
Jones, L. A. H.
1 / 1 shared
Ding, B.
1 / 4 shared
Roberts, J. W.
1 / 1 shared
Chalker, P. R.
1 / 5 shared
Dhanak, V. R.
1 / 7 shared
Major, J. D.
1 / 1 shared
Phillips, L. J.
1 / 2 shared
Humphreys, Colin
1 / 8 shared
Kappers, Menno
1 / 4 shared
Humphreys, Colin J.
2 / 8 shared
Sahonta, Suman-Lata
1 / 2 shared
Lee, Lyl
1 / 1 shared
Gupta, Priti
1 / 1 shared
Rhode, Sneha L.
1 / 1 shared
Horton, Mk
1 / 1 shared
Kovacs, Andras
1 / 5 shared
Zielinski, Ms
1 / 1 shared
Ohanlon, Tj
1 / 2 shared
Dunin-Borkowski, Re
1 / 2 shared
Sahonta, S. L.
1 / 2 shared
Dusane, R. O.
1 / 2 shared
Humphreys, C. J.
4 / 18 shared
Mcaleese, C.
2 / 7 shared
Oehler, F.
3 / 9 shared
Rhode, S. L.
1 / 2 shared
Fu, W. Y.
1 / 2 shared
Moram, M. A.
2 / 12 shared
Humphreys, Cj
1 / 5 shared
Dusane, Ro
1 / 1 shared
Sahonta, Sl
1 / 3 shared
Fu, Wy
1 / 1 shared
Moram, Ma
1 / 2 shared
Rhode, Sl
1 / 1 shared
Thrush, E. J.
1 / 1 shared
Zhu, T.
1 / 15 shared
Lodié, D.
1 / 1 shared
Trinh-Xuan, L.
2 / 2 shared
Zhu, D.
1 / 8 shared
Puchtler, T. J.
1 / 1 shared
Sahonta, S.-L.
1 / 2 shared
Rhode, S.
1 / 2 shared
Chart of publication period
2024
2021
2020
2019
2017
2014
2013
2012
2011

Co-Authors (by relevance)

  • Reynolds, Steve
  • Jarman, John
  • Chalker, Paul
  • Barr, Kristopher
  • Roberts, Joseph
  • Nicol, David
  • Roberts, Jw
  • Jarman, Jj
  • Barr, K.
  • Reynolds, S.
  • Nicol, D.
  • Chalker, Pr
  • Kappers, Menno J.
  • Frentrup, Martin
  • Lee, Lok Yi
  • Vacek, Petr
  • Wallis, David J.
  • Oliver, Rachel A.
  • Groger, Roman
  • Wallis, Dj
  • Lee, Ly
  • Kappers, Mj
  • Gröger, Roman
  • Oliver, R. A.
  • Kappers, M. J.
  • Ohanlon, T. J.
  • Bao, A.
  • Calahorra, Yonatan
  • Brennen, Barry
  • Veigang-Radulescu, Vlad-Petru
  • Burton, Oliver J.
  • Pollard, Andrew J.
  • Hofmann, Stephan
  • Zhu, Tongtong
  • Kumar, R. Vasant
  • Liu, Yingjun
  • Springbett, Helen P.
  • Griffin, Peter H.
  • Pomeroy, James W.
  • Cuenca, Jerome
  • Mandal, Soumen
  • Batten, Tim
  • Yuan, Chao
  • Williams, Oliver A.
  • Kuball, Martin
  • Bland, Henry
  • Morgan, David
  • Wallis, David
  • Oliver, Rachel
  • Thomas, Evan
  • Gibbon, J. T.
  • Jones, L. A. H.
  • Ding, B.
  • Roberts, J. W.
  • Chalker, P. R.
  • Dhanak, V. R.
  • Major, J. D.
  • Phillips, L. J.
  • Humphreys, Colin
  • Kappers, Menno
  • Humphreys, Colin J.
  • Sahonta, Suman-Lata
  • Lee, Lyl
  • Gupta, Priti
  • Rhode, Sneha L.
  • Horton, Mk
  • Kovacs, Andras
  • Zielinski, Ms
  • Ohanlon, Tj
  • Dunin-Borkowski, Re
  • Sahonta, S. L.
  • Dusane, R. O.
  • Humphreys, C. J.
  • Mcaleese, C.
  • Oehler, F.
  • Rhode, S. L.
  • Fu, W. Y.
  • Moram, M. A.
  • Humphreys, Cj
  • Dusane, Ro
  • Sahonta, Sl
  • Fu, Wy
  • Moram, Ma
  • Rhode, Sl
  • Thrush, E. J.
  • Zhu, T.
  • Lodié, D.
  • Trinh-Xuan, L.
  • Zhu, D.
  • Puchtler, T. J.
  • Sahonta, S.-L.
  • Rhode, S.
OrganizationsLocationPeople

article

Directly correlated microscopy of trench defects in InGaN quantum wells

  • Oliver, R. A.
  • Kappers, M. J.
  • Ohanlon, T. J.
  • Bao, A.
  • Massabuau, Fcp
Abstract

Directly correlated measurements of the surface morphology, light emission and subsurface structure and composition were carried out on the exact same nanoscale trench defects in InGaN quantum well (QW) structures. Multiple scanning probe, scanning electron and transmission electron microscopy techniques were used to explain the origin of their unusual emission behaviour and the relationship between surface morphology and cathodoluminescence (CL) redshift. Trench defects comprise of an open trench partially or fully enclosing material in InGaN QWs with different CL emission properties to their surroundings. The CL redshift was shown to typically vary with the width of the trench and the prominence of the material enclosed by the trench above its surroundings. Three defects, encompassing typical and atypical features, were prepared into lamellae for transmission electron microscopy (TEM). A cross marker technique was used in the focused ion beam-scanning electron microscope (FIB-SEM) to centre the previously characterised defects in each lamella for further analysis. The defects with wider trenches and strong redshifts in CL emission had their initiating basal-plane stacking fault (BSF) towards the bottom of the QW stack, while the BSF formed near the top of the QW stack for a defect with a narrow trench and minimal redshift. The raised-centre, prominent defect showed a slight increase in QW thickness moving up the QW stack while QW widths in the level-centred defect remained broadly constant. The indium content of the enclosed QWs increased above the BSF positions up to a maximum, with an increase of approximately 4% relative to the surroundings seen for one defect examined. Gross fluctuations in QW width (GWWFs) were present in the surrounding material in this sample but were not seen in QWs enclosed by the defect volumes. These GWWFs have been linked with indium loss from surface step edges two or more monolayers high, and many surface step edges appear pinned by the open trenches, suggesting another reason for the higher indium content seen in QWs enclosed by trench defects.

Topics
  • morphology
  • surface
  • scanning electron microscopy
  • focused ion beam
  • transmission electron microscopy
  • defect
  • stacking fault
  • Indium
  • lamellae