People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Hanham, Stephen M.
Imperial College London
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (8/8 displayed)
- 2023High-Q 100 ghz photonic crystal resonator fabricated from a cyclic olefin copolymercitations
- 2017Microwave study of field-effect devices based on graphene/aluminum nitride/graphene structurescitations
- 2016Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscopecitations
- 2016Microwave-to-terahertz dielectric resonators for liquid sensing in microfluidic systemscitations
- 2015Dielectric measurements of nanoliter liquids with a photonic crystal resonator at terahertz frequenciescitations
- 2014A near-field scanning microwave microscope for measurement of the permittivity and loss of high-loss materialscitations
- 2011Microwave Debye relaxation analysis of dissolved proteinscitations
- 2008High efficiency excitation of dielectric rods using a magnetic ring currentcitations
Places of action
Organizations | Location | People |
---|
article
Measurement of the permittivity and loss of high-loss materials using a Near-Field Scanning Microwave Microscope
Abstract
<p>In this paper improvements to a Near-Field Scanning Microwave Microscope (NSMM) are presented that allow the loss of high loss dielectric materials to be measured accurately at microwave frequencies. This is demonstrated by measuring polar liquids (loss tangent tan. δ≈1) for which traceable data is available. The instrument described uses a wire probe that is electromagnetically coupled to a resonant cavity. An optical beam deflection system is incorporated within the instrument to allow contact mode between samples and the probe tip to be obtained. Liquids are contained in a measurement cell with a window of ultrathin glass. The calibration process for the microscope, which is based on image-charge electrostatic models, has been adapted to use the Laplacian 'complex frequency'. Measurements of the loss tangent of polar liquids that are consistent with reference data were obtained following calibration against single-crystal specimens that have very low loss.</p>