Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Mädler, Lutz

  • Google
  • 8
  • 40
  • 134

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (8/8 displayed)

  • 2024Flame emission spectroscopy of single droplet micro explosions6citations
  • 2023Dry-Adhesive Microstructures for Material Handling of Additively Manufactured and Deep-Rolled Metal Surfaces with Reference to Mars3citations
  • 2023Influence of oxygen in the production chain of Cu–Ti-based metallic glasses via laser powder bed fusioncitations
  • 2022Properties of gas-atomized Cu-Ti-based metallic glass powders for additive manufacturing27citations
  • 2021Reducing cohesion of metal powders for additive manufacturing by nanoparticle dry-coatingcitations
  • 2019Inverse Nanocomposites Based on Indium Tin Oxide for Display Applications: Improved Electrical Conductivity via Polymer Addition13citations
  • 2018Fabrication and performance of Li4Ti5O12/C Li-ion battery electrodes using combined double flame spray pyrolysis and pressure-based lamination technique76citations
  • 2013Numerical simulation of electron energy loss spectroscopy using a generalized multipole technique9citations

Places of action

Chart of shared publication
Pokhrel, Suman
2 / 2 shared
Groeneveld, Jan Derk
1 / 1 shared
Okulov, Ilya
1 / 9 shared
Mensching, Nicole
1 / 3 shared
Krüger, Mirja Louisa
1 / 1 shared
Kvaratskheliya, Askar
1 / 1 shared
Tracht, Kirsten
1 / 1 shared
Meyer, Daniel
1 / 7 shared
Kleszczynski, Stefan
2 / 12 shared
Ellendt, Nils
1 / 4 shared
Frey, Maximilian
2 / 25 shared
Uhlenwinkel, Volker
3 / 14 shared
Wegner, Jan
2 / 11 shared
Busch, Ralf
2 / 44 shared
Soares Barreto, Erika
2 / 5 shared
Jose, Allen
1 / 1 shared
Neuber, Nico
1 / 24 shared
Jägle, Eric A.
1 / 11 shared
Dehm, Gerhard
1 / 58 shared
Jung, Hyo Jun
1 / 1 shared
Gärtner, Eric
1 / 6 shared
Peter, Nicolas J.
1 / 5 shared
Hartwig, Andreas
1 / 8 shared
Naatz, Hendrik
1 / 1 shared
Baric, Valentin
1 / 1 shared
Hoffmann, Ron
1 / 2 shared
Schopf, Sven O.
1 / 1 shared
Glenneberg, Jens
1 / 8 shared
Rosenauer, Andreas
1 / 13 shared
Gockeln, Michael
1 / 1 shared
Fritsching, Udo
1 / 7 shared
Kun, Robert
1 / 5 shared
Schowalter, Marco
1 / 6 shared
Meierhofer, Florian
1 / 2 shared
Busse, Matthias
1 / 19 shared
Hergert, Wolfram
1 / 1 shared
Wriedt, Thomas
1 / 1 shared
Matyssek, Christian
1 / 3 shared
Karamehmedović, Mirza
1 / 2 shared
Kiewidt, Lars
1 / 2 shared
Chart of publication period
2024
2023
2022
2021
2019
2018
2013

Co-Authors (by relevance)

  • Pokhrel, Suman
  • Groeneveld, Jan Derk
  • Okulov, Ilya
  • Mensching, Nicole
  • Krüger, Mirja Louisa
  • Kvaratskheliya, Askar
  • Tracht, Kirsten
  • Meyer, Daniel
  • Kleszczynski, Stefan
  • Ellendt, Nils
  • Frey, Maximilian
  • Uhlenwinkel, Volker
  • Wegner, Jan
  • Busch, Ralf
  • Soares Barreto, Erika
  • Jose, Allen
  • Neuber, Nico
  • Jägle, Eric A.
  • Dehm, Gerhard
  • Jung, Hyo Jun
  • Gärtner, Eric
  • Peter, Nicolas J.
  • Hartwig, Andreas
  • Naatz, Hendrik
  • Baric, Valentin
  • Hoffmann, Ron
  • Schopf, Sven O.
  • Glenneberg, Jens
  • Rosenauer, Andreas
  • Gockeln, Michael
  • Fritsching, Udo
  • Kun, Robert
  • Schowalter, Marco
  • Meierhofer, Florian
  • Busse, Matthias
  • Hergert, Wolfram
  • Wriedt, Thomas
  • Matyssek, Christian
  • Karamehmedović, Mirza
  • Kiewidt, Lars
OrganizationsLocationPeople

article

Numerical simulation of electron energy loss spectroscopy using a generalized multipole technique

  • Mädler, Lutz
  • Hergert, Wolfram
  • Wriedt, Thomas
  • Matyssek, Christian
  • Karamehmedović, Mirza
  • Kiewidt, Lars
Abstract

We numerically simulate low-loss Electron Energy Loss Spectroscopy (EELS) of isolated spheroidal nanoparticles, using an electromagnetic model based on a Generalized Multipole Technique (GMT). The GMT is fast and accurate, and, in principle, flexible regarding nanoparticle shape and the incident electron beam. The implemented method is validated against reference analytical and numerical methods for plane-wave scattering by spherical and spheroidal nanoparticles. Also, simulated electron energy loss (EEL) spectra of spherical and spheroidal nanoparticles are compared to available analytical and numerical solutions. An EEL spectrum is predicted numerically for a prolate spheroidal aluminum nanoparticle. The presented method is the basis for a powerful tool for the computation, analysis and interpretation of EEL spectra of general geometric configurations.

Topics
  • nanoparticle
  • impedance spectroscopy
  • simulation
  • aluminium
  • electron energy loss spectroscopy