People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Allen, Leslie
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2010Elemental mapping in scanning transmission electron microscopycitations
- 2009Quantitative comparisons of contrast in experimental and simulated bright-field scanning transmission electron microscopy imagescitations
- 2009Theory of dynamical scattering in near-edge electron energy loss spectroscopycitations
- 2008Depth sectioning using electron energy loss spectroscopycitations
- 2008Three-dimensional imaging in double aberration-corrected scanning confocal electron microscopy, Part II: Inelastic scatteringcitations
- 2008Volcano structure in atomic resolution core-loss imagescitations
- 2007Interpreting atomic-resolution spectroscopic imagescitations
- 2007Imaging using inelastically scattered electrons in CTEM and STEM geometrycitations
- 2007Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopycitations
Places of action
Organizations | Location | People |
---|
article
Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy
Abstract
Recent and ongoing improvements in aberration correction have opened up the possibility of depth sectioning samples using the scanning transmission electron microscope in a fashion similar to the confocal scanning optical microscope. We explore questions of principle relating to image interpretability in the depth sectioning of samples using electron energy loss spectroscopy. We show that provided electron microscope probes are sufficiently fine and detector collection semi-angles are sufficiently large we can expect to locate dopant atoms inside a crystal. Furthermore, unlike high angle annular dark field imaging, electron energy loss spectroscopy can resolve dopants of smaller atomic mass than the supporting crystalline matrix