People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mela, Kristo
Tampere University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2024Test methods for determination of shear properties of sandwich panels
- 2024Experimental and Numerical Study of Steel-faced Profiled Sandwich Panels with PIR Core Loaded in Flexure
- 2023Experimental investigation on the tensile behaviour of welded RHS high strength steel X-jointscitations
- 2023Experimental investigation on the tensile behaviour of welded RHS high strength steel X-jointscitations
- 2023Equivalent material properties of the heat-affected zone in welded cold-formed rectangular hollow section connectionscitations
- 2023Equivalent material properties of the heat-affected zone in welded cold-formed rectangular hollow section connectionscitations
- 2022Fracture simulation of welded RHS X-joints using GTN damage modelcitations
- 2022Fracture simulation of welded RHS X-joints using GTN damage modelcitations
- 2022Translational stiffness and resistance of sandwich panel connections at elevated temperaturecitations
- 2022Shear resistance of sandwich panel connection at elevated temperaturecitations
- 2022Probabilistic modelling of residual stresses in cold-formed rectangular hollow sectionscitations
- 2022Effective material model for cold-formed rectangular hollow sections in beam element-based advanced analysiscitations
- 2021Load-bearing capacity of cold-formed sinusoidal steel sheetscitations
- 2019Experimental study on temperature distribution of sandwich panel joints in fire
- 2019Numerical analysis of the behaviour of stainless steel cellular beam in fire
- 2019Temperature distribution of trapezoidal sheeting in fire
- 2017Economical design of high strength steel trusses using multi-criteria optimizationcitations
Places of action
Organizations | Location | People |
---|
article
Equivalent material properties of the heat-affected zone in welded cold-formed rectangular hollow section connections
Abstract
<p>A welded connection consists of three main material zones, the base material (BM), the heat-affect zone (HAZ), and the weld metal (WM). The strength of HAZ depends on the BM grade and manufacturing process, electrode grade, and welding parameters. Under certain conditions, HAZ has the lowest material strength, especially for high-strength steel. Therefore, a semi-empirical methodology is proposed to establish a constitutive model of HAZ necessary for predicting the fracture position of welded connections. This methodology is based on an engineering approach to consider HAZ as an isotropic and homogeneous material, with no consideration of different volumetric fractions of microstructures within a HAZ. The equivalent material properties of HAZ in butt-welded hollow section connections were investigated experimentally and numerically. Hardness tests and microstructure investigations were conducted to determine the boundaries of material variations and the width of HAZ. The stress–strain relationship of HAZ was established and calibrated based on tensile coupon tests and finite element analyses. Using the calibrated HAZ stress–strain relationship, the effect of transverse constraint imposed by the adjacent and stronger material (BM and WM) on HAZ was evaluated in the welded connections. Finally, the new methodology of a semi-empirical constitutive model based on the Swift model was used to propose equivalent characteristics of HAZ as a function of the mechanical properties of BM for a specific welding procedure considered in the project.</p>