People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Meng, Maozhou
University of Plymouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2023SeaBioComp D.3.5.2 Life Cycle Assessment (LCA) for the different biocomposites production routes
- 20233D heated mould tool development for the manufacture of PLA matrix composites via in situ polymerization (ISP) during monomer infusion under flexible tooling (MIFT)
- 2022In situ polymerisation during monomer infusion under flexible tooling (MIFT)
- 2022FEA modelling and environmental assessment of a thin-walled composite drive shaftcitations
- 2021Large thermoplastic matrix marine composites by liquid composite moulding processes
- 2021Monomer selection for natural fibre-reinforced thermoplastic composite manufacture by monomer infusion under flexible tooling (MIFT)
- 2021Flax/acrylic FLOW turbine blade manufactured by in situ polymerisation (ISP) monomer infusion under flexible tooling (MIFT)
- 2020Recyclable structural composites for marine renewable energy
- 2020Thermoplastic matrix systems for large marine structures
Places of action
Organizations | Location | People |
---|
article
FEA modelling and environmental assessment of a thin-walled composite drive shaft
Abstract
File replaced (incorrect version) on 5/8/2022 by KT (LDS). ; Fibre reinforced plastics (FRP) composites have been widely used in the automotive industry with the primary focus on reduced mass. However, there are relatively few reports on their application on power transmission components, such as drive shafts. This paper explores the feasibility of replacing the traditional structural steel by light weight FRP composites in a drive shaft. Three FRP composites are considered against a steel drive shaft; basalt/epoxy, carbon/epoxy, and CNT (carbon nanotubes) reinforced carbon/epoxy composites. The mechanical performance was analysed by finite element analysis (FEA) tool and classical laminate theory (CLT), while the environmental performance was evaluated by life cycle assessment (LCA) method. The study shows that with careful design a composite drive shaft can outperform the mechanical performance of a steel shaft (up to 90% mass saving, and 50% higher Factor of Safety). The study found steel shafts were preferable to FRP shafts based on embodied energy (steel total embodied energy 150MJ, FRP +325MJ). Reductions in carbon footprint from reduced emissions due to weight savings meant a carbon/epoxy shaft was preferable to a steel shaft. Two new material indices were suggested which can be used to select materials based on minimum embodied energy and global warming potential.