People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tita, Volnei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Assessing critical fracture energy in mode I for bonded composite joints: A numerical–experimental approach with uncertainty analysiscitations
- 2024Multiscale modelling of composite laminates with voids through the direct FE 2 methodcitations
- 2024On the experimental determination and prediction of damage evolution in composites via cyclic testingcitations
- 2022A finite element unified formulation for composite laminates in bending considering progressive damagecitations
- 2022A finite element unified formulation for composite laminates in bending considering progressive damagecitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2017Stacking sequence optimization in composite tubes under internal pressure based on genetic algorithm accounting for progressive damagecitations
- 2017Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compressioncitations
- 2017Erratum to ‘‘Damage modeling for carbon fiber/epoxy filament wound composite tubes under radial compression” [Compos Struct 160 (2017) 204–210] (S0263822316313083)(10.1016/j.compstruct.2016.10.036)
- 2016Damage and failure in carbon/epoxy filament wound composite tubes under external pressurecitations
- 2015Progressive failure analysis of filament wound composite tubes under internal pressure
- 2015Progressive failure analysis of filament wound composite tubes under internal pressure
- 2014Experimental analyses of metal-composite bonded joints: damage identification
Places of action
Organizations | Location | People |
---|
article
A finite element unified formulation for composite laminates in bending considering progressive damage
Abstract
This works proposes a novel approach to develop higher-order finite elements by taking progressive damage into account in the formulation. The approach is based on Carrera's unified formulation (CUF) while the damage model is based on continuum damage mechanics (CDM) principles, which is implemented as a UEL (User Element subroutine) written in FORTRAN and linked to Abaqus. The approach is assessed by simulating a plate under distributed and sinusoidal loads. Besides, a progressive damage analysis of a composite coupon under three-point bending is simulated, and the numerical predictions are compared against experimental results, showing good correlation. The main findings show that the implemented UEL is accurate and fast enough to predict progressive failure events and the in-plane damage mechanisms for composite laminates under bending loadings.