Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Porter, Mark

  • Google
  • 1
  • 6
  • 11

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloy11citations

Places of action

Chart of shared publication
Wu, Hao
1 / 21 shared
Quinn, Justin
1 / 10 shared
Clarke, Ryan
1 / 1 shared
Ward, Richard
1 / 2 shared
Mcgarrigle, Cormac
1 / 11 shared
Mcfadden, Shaun
1 / 37 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Wu, Hao
  • Quinn, Justin
  • Clarke, Ryan
  • Ward, Richard
  • Mcgarrigle, Cormac
  • Mcfadden, Shaun
OrganizationsLocationPeople

article

Thread-stripping test procedures leading to factors of safety data for friction-drilled holes in thin-section aluminium alloy

  • Wu, Hao
  • Quinn, Justin
  • Clarke, Ryan
  • Ward, Richard
  • Porter, Mark
  • Mcgarrigle, Cormac
  • Mcfadden, Shaun
Abstract

Friction drilling is a hole-making process suitable for thin sections of ductile metal. A rotating tool is plunged into the workpiece to form the pilot hole. The hole is then threaded in a follow-up process. A bushing forms on the exit side of the hole, which allows for longer engagement lengths in threaded assemblies. For comparison purposes, four combinations of threaded-hole processes were applied to 1.5mm-section, 6082-T6 aluminium alloy. The processes involved were friction and twist drilling followed by thread forming or cutting. Vickers hardness and microstructural analyses were used to assess the condition of the material. An in-house test method was developed to measure the axial load-deflection response. Progressive failure occurred by thread stripping. Friction drilling followed by thread forming gave peak loads 35% higher than conventionally drilled and tapped holes.Also, hardness increased from 111HV in the parent metal to 125HV (with an increase in hardness to depths of 0.5mm) due to work hardening. Evidence of precipitate dissolution was negligible which suggests that the friction drilling process operated below the solvus temperature. A novel approach for determining reliably-based, thread-stripping Factors of Safety (FoS) is presented. FoS in the range 3.61 to 4.38 gave a reliability of 95% to 99.9% against thread stripping in friction-drilled, thread formed joints.

Topics
  • impedance spectroscopy
  • aluminium
  • aluminium alloy
  • hardness
  • precipitate
  • forming