Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Nielsen, Mark W. D.

  • Google
  • 1
  • 4
  • 13

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2021Buckle-driven delamination models for laminate strength prediction and damage tolerant design13citations

Places of action

Chart of shared publication
Srisuriyachot, Jiraphant
1 / 4 shared
Rhead, Andrew T.
1 / 40 shared
Butler, Richard
1 / 40 shared
Köllner, Anton
1 / 2 shared
Chart of publication period
2021

Co-Authors (by relevance)

  • Srisuriyachot, Jiraphant
  • Rhead, Andrew T.
  • Butler, Richard
  • Köllner, Anton
OrganizationsLocationPeople

article

Buckle-driven delamination models for laminate strength prediction and damage tolerant design

  • Srisuriyachot, Jiraphant
  • Rhead, Andrew T.
  • Butler, Richard
  • Nielsen, Mark W. D.
  • Köllner, Anton
Abstract

<p>Two state-of-the-art analytical compression after impact (CAI) modelling approaches are presented and evaluated for the problem of thin-film buckle-driven propagation of a delamination in composite laminates. Characteristic phenomena are investigated by evaluating the behaviour of the energy release rate of an anisotropic sublaminate above a 2D embedded delamination. These characteristics include extension-bend, shear-bend and bend-twist coupling as well as contact of sublaminate and base laminate. A holistic approach with the aid of a detailed analysis of deformation characteristics from artificial delamination experiments and finite element analysis provide strong validation of the modelling approaches. Suggestions are made regarding analytical methods suitable for use in the initial aerospace structural design stage. It is found that models which capture the mode-mixity and post-buckled energy terms accurately will allow for better design decisions to be made that are not overly conservative. Whereas methods, which do not account for such mixity and post-buckling, can nevertheless be used to design for damage tolerance.</p>

Topics
  • impedance spectroscopy
  • experiment
  • strength
  • anisotropic
  • composite
  • finite element analysis