Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Limbachiya, Vireen

  • Google
  • 6
  • 8
  • 114

Birmingham City University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2023Mechanical and GWP Assessment of Concrete Using Blast Furnace Slag, Silica Fume and Recycled Aggregate24citations
  • 2022A Numerical Study of Shape Memory Alloy (SMA) Reinforced Beam Subjected to Seismic Loadingcitations
  • 2022Mechanical Properties of Bamboo Core Sandwich Panelscitations
  • 2021Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams38citations
  • 2021Impact of chopped basalt fibres on the mechanical proper- ties of concretecitations
  • 2016Strength, durability and leaching properties of concrete paving blocks incorporating GGBS and SF52citations

Places of action

Chart of shared publication
Kovacs, R.
1 / 1 shared
Rispoli, O.
1 / 1 shared
Shamass, Rabee
5 / 15 shared
El-Desoqi, Mohammed
1 / 1 shared
Bloy, J.
1 / 1 shared
Perera, J.
1 / 2 shared
Ganjian, Eshmaiel
1 / 52 shared
Claisse, P.
1 / 1 shared
Chart of publication period
2023
2022
2021
2016

Co-Authors (by relevance)

  • Kovacs, R.
  • Rispoli, O.
  • Shamass, Rabee
  • El-Desoqi, Mohammed
  • Bloy, J.
  • Perera, J.
  • Ganjian, Eshmaiel
  • Claisse, P.
OrganizationsLocationPeople

article

Application of Artificial Neural Networks for web-post shear resistance of cellular steel beams

  • Limbachiya, Vireen
  • Shamass, Rabee
Abstract

The aim of this paper is to predict web-post buckling shear strength of cellular beams made from normal strength steel using the Artificial Neural Networks (ANN). 304 developed finite-element numerical models were used to train, validate and test 16 different ANN models. To verify the accuracy of the ANN model, the ANN predictions were compared with experimental and analytical results. Results show that ANN models that used geometric parameters as an ANN input were able to predict web-post buckling strength to a higher level of accuracy in comparison to models using only geometric ratios as an ANN input. An ANN-based formula with 4 neurons was proposed in this study. In comparison to existing design guidance, it is shown that an ANN model trained with the Levenberg-Marquardt backpropagation algorithm is capable of predicting the web-post shear resistance to a higher level of accuracy. The formula developed can be easily implemented in Excel or in user graphical interface. It can be a potential tool for structural engineers who aim to accurately estimate the web-post buckling of cellular steel beams without the use of costly resources associated with FE analysis.

Topics
  • impedance spectroscopy
  • strength
  • steel