Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Rohwer, Klaus

  • Google
  • 2
  • 8
  • 77

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2024BEOS: Computation of the buckling behavior of composite shells (Version 1.3.0)citations
  • 2017Buckling of axially compressed CFRP cylinders with and without additional lateral load77citations

Places of action

Chart of shared publication
Garbade, Marc
1 / 2 shared
Freund, Sebastian
1 / 1 shared
Geier, Bodo
1 / 1 shared
Schillo, Conny
1 / 1 shared
Castro, Saullo G. P.
1 / 27 shared
Wilckens, Dirk
1 / 1 shared
Khakimova, Regina
1 / 4 shared
Degenhardt, Richard
1 / 8 shared
Chart of publication period
2024
2017

Co-Authors (by relevance)

  • Garbade, Marc
  • Freund, Sebastian
  • Geier, Bodo
  • Schillo, Conny
  • Castro, Saullo G. P.
  • Wilckens, Dirk
  • Khakimova, Regina
  • Degenhardt, Richard
OrganizationsLocationPeople

article

Buckling of axially compressed CFRP cylinders with and without additional lateral load

  • Castro, Saullo G. P.
  • Wilckens, Dirk
  • Khakimova, Regina
  • Rohwer, Klaus
  • Degenhardt, Richard
Abstract

<p>Thin-walled structures are widely used in aerospace, offshore, civil, marine and other engineering industries. Buckling of such thin-walled imperfection sensitive structures is a very important phenomenon to be considered during their design phase. Existing design guidelines, being the most known the NASA SP-8007 for cylinders dated from the late 1960's are currently used in the aerospace industry and employ conservative lower-bound knock-down factors. These empirically based lower-bound methods do not include important mechanical properties of laminated composite materials, such as the stacking sequence. New design approaches that allow taking full advantage of composite materials are therefore required. This study deals with buckling experiments of axially compressed, unstiffened carbon fiber–reinforced polymer (CFRP) cylinders with and without an additional lateral load. Two geometrically identical cylinders with the same layup were designed, manufactured and tested. Before testing, the thickness of the cylinders was measured with ultrasonic inspection and the geometry was measured utilizing a 3D scanning system based on photogrammetry. During testing, a digital image correlation system was employed to monitor deformations, strain gage readings and load-shortening data was taken. Modelling of shape mid-surface and thickness imperfections as well as fiber volume fraction correction are included into the Finite Element Analysis (FEA) of the test structures, and the experimental results are compared against FEA results.</p>

Topics
  • impedance spectroscopy
  • surface
  • polymer
  • Carbon
  • phase
  • experiment
  • composite
  • ultrasonic
  • finite element analysis