People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Castro, Saullo G. P.
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (27/27 displayed)
- 2023Explainable Artificial Intelligence to Investigate the Contribution of Design Variables to the Static Characteristics of Bistable Composite Laminatescitations
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Developing Equations for Free Vibration Parameters of Bistable Composite Plates Using Multi-Objective Genetic Programming
- 2022Measurement of damage growth in ultrasonic spot welded joint
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Design, modeling, optimization, manufacturing and testing of variable-angle filament-wound cylinderscitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Measuring geometric imperfections of variable–angle filament–wound cylinders with a simple digital image correlation setupcitations
- 2021Semi-analytical modelling of variable stiffness laminates with discontinuitiescitations
- 2021Circumferential and radial lamina application for natural frequencies problems
- 2020Numerical investigation of rain droplet impact on offshore wind turbine blades under different rainfall conditionscitations
- 2020A multiaxial fatigue damage model for isotropic materialscitations
- 2019Supersonic Flutter and Buckling Optimization of Tow Steered Composite Platescitations
- 2018An active-passive nonlinear finite element model for electromechanical composite morphing beams
- 2017Aeroelastic behavior of stiffened composite laminated panel with embedded SMA wire using the hierarchical Rayleigh–Ritz methodcitations
- 2017Assembly of semi-analytical models to address linear buckling and vibration of stiffened composite panels with debonding defectcitations
- 2017Panel flutter analysis and optimization of composite tow steered platescitations
- 2017Buckling of axially compressed CFRP cylinders with and without additional lateral loadcitations
- 2016Design and Manufacture of Conical Shell Structures Using Prepreg Laminatescitations
- 2016Flutter of stiffened composite panels considering the stiffener's base as a structural elementcitations
- 2015Experimental nondestructive test for estimation of buckling load on unstiffened cylindrical shells using vibration correlation techniquecitations
- 2015Investigation of Buckling Behavior of Composite Shell Structures with Cutoutscitations
- 2015Experimental and numerical estimation of buckling load on unstiffened cylindrical shells using a vibration correlation techniquecitations
- 2014Numerical characterization of imperfection sensitive composite structurescitations
- 2014Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shellscitations
- 2014Verification study on buckling behaviour of composite cylinder with eccentric supports
Places of action
Organizations | Location | People |
---|
article
Buckling of axially compressed CFRP cylinders with and without additional lateral load
Abstract
<p>Thin-walled structures are widely used in aerospace, offshore, civil, marine and other engineering industries. Buckling of such thin-walled imperfection sensitive structures is a very important phenomenon to be considered during their design phase. Existing design guidelines, being the most known the NASA SP-8007 for cylinders dated from the late 1960's are currently used in the aerospace industry and employ conservative lower-bound knock-down factors. These empirically based lower-bound methods do not include important mechanical properties of laminated composite materials, such as the stacking sequence. New design approaches that allow taking full advantage of composite materials are therefore required. This study deals with buckling experiments of axially compressed, unstiffened carbon fiber–reinforced polymer (CFRP) cylinders with and without an additional lateral load. Two geometrically identical cylinders with the same layup were designed, manufactured and tested. Before testing, the thickness of the cylinders was measured with ultrasonic inspection and the geometry was measured utilizing a 3D scanning system based on photogrammetry. During testing, a digital image correlation system was employed to monitor deformations, strain gage readings and load-shortening data was taken. Modelling of shape mid-surface and thickness imperfections as well as fiber volume fraction correction are included into the Finite Element Analysis (FEA) of the test structures, and the experimental results are compared against FEA results.</p>