Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zimmermann, Rolf

  • Google
  • 3
  • 6
  • 345

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2015Investigation of Buckling Behavior of Composite Shell Structures with Cutouts39citations
  • 2014Numerical characterization of imperfection sensitive composite structures92citations
  • 2014Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells214citations

Places of action

Chart of shared publication
Arbelo, Mariano A.
3 / 9 shared
Castro, Saullo G. P.
3 / 27 shared
Khakimova, Regina
2 / 4 shared
Herrmann, Annemarie
1 / 3 shared
Degenhardt, Richard
3 / 8 shared
Hilburger, Mark W.
1 / 1 shared
Chart of publication period
2015
2014

Co-Authors (by relevance)

  • Arbelo, Mariano A.
  • Castro, Saullo G. P.
  • Khakimova, Regina
  • Herrmann, Annemarie
  • Degenhardt, Richard
  • Hilburger, Mark W.
OrganizationsLocationPeople

article

Geometric imperfections and lower-bound methods used to calculate knock-down factors for axially compressed composite cylindrical shells

  • Arbelo, Mariano A.
  • Castro, Saullo G. P.
  • Zimmermann, Rolf
  • Khakimova, Regina
  • Hilburger, Mark W.
  • Degenhardt, Richard
Abstract

<p>The important role of geometric imperfections on the decrease of the buckling load for thin-walled cylinders had been recognized already by the first authors investigating the theoretical approaches on this topic. However, there are currently no closed-form solutions to take imperfections into account already during the early design phases, forcing the analysts to use lower-bound methods to calculate the required knock-down factors (KDF). Lower-bound methods such as the empirical NASA SP-8007 guideline are commonly used in the aerospace and space industries, while the approaches based on the Reduced Stiffness Method (RSM) have been used mostly in the civil engineering field. Since 1970s a considerable number of experimental and numerical investigations have been conducted to develop new stochastic and deterministic methods for calculating less conservative KDFs. Among the deterministic approaches, the single perturbation load approach (SPLA), proposed by Hühne, will be further investigated for axially compressed fiber composite cylindrical shells and compared with four other methods commonly used to create geometric imperfections: linear buckling mode-shaped, geometric dimples, axisymmetric imperfections and measured geometric imperfections from test articles. The finite element method using static analysis with artificial damping is used to simulate the displacement controlled compression tests up to the post-buckled range of loading. The implementation of each method is explained in details and the different KDFs obtained are compared. The study is part of the European Union (EU) project DESICOS, whose aim is to combine stochastic and deterministic approaches to develop less conservative guidelines for the design of imperfection sensitive structures.</p>

Topics
  • impedance spectroscopy
  • phase
  • laser emission spectroscopy
  • composite
  • compression test