Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Franza, Andrea

  • Google
  • 3
  • 10
  • 45

Aarhus University

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2023A simplified approach to numerical modelling of an underground pumped hydroelectric energy storage systemcitations
  • 2022An equivalent beam approach for assessing tunnelling-induced distortions of frames with infills8citations
  • 2020Timoshenko beam models for the coupled analysis of building response to tunnelling37citations

Places of action

Chart of shared publication
Tourchi, Saeed
1 / 1 shared
Sørensen, Kenny Kataoka
1 / 1 shared
Zamani, G.
1 / 1 shared
Andersen, Lars Vabbersgaard
1 / 3 shared
Stutz, Hans Henning
1 / 3 shared
Miraei, Seyedmohsen
1 / 1 shared
Losacco, Nunzio
1 / 1 shared
Boldini, Daniela
1 / 1 shared
Acikgoz, Sinan
1 / 1 shared
Dejong, Matt J.
1 / 1 shared
Chart of publication period
2023
2022
2020

Co-Authors (by relevance)

  • Tourchi, Saeed
  • Sørensen, Kenny Kataoka
  • Zamani, G.
  • Andersen, Lars Vabbersgaard
  • Stutz, Hans Henning
  • Miraei, Seyedmohsen
  • Losacco, Nunzio
  • Boldini, Daniela
  • Acikgoz, Sinan
  • Dejong, Matt J.
OrganizationsLocationPeople

article

An equivalent beam approach for assessing tunnelling-induced distortions of frames with infills

  • Miraei, Seyedmohsen
  • Franza, Andrea
  • Losacco, Nunzio
  • Boldini, Daniela
Abstract

This paper presents an approach to evaluate the response of low-and medium-rise frames with continuous foundations, either with or without infills, to tunnelling employing an equivalent beam with a behaviour dominated by shear deformations. Simplified soil-structure interaction models, consisting of a beam resting on an elastic continuum half-space, are compared against advanced three-dimensional analyses in which the tunnel, the soil, and the building are explicitly modelled. In the simplified approach, the frame is schematised as a Timoshenko beam and reliable procedures to estimate both bending and shear stiffness are discussed. In the refined modelling strategy, an advanced elastoplastic constitute law is employed, capable of reproducing fairly well the soil response to the excavation for increasing values of volume loss, while the full geometry of the structure is considered. First, the results of the proposed numerical approaches are compared in terms of tunnelling-induced foundation displacements, bay deformations and maximum tensile strains in the infills. Then, for the infill panels, the reliability of estimating the maximum tensile strain from the angular distortion of the frame bays is assessed. Finally, a meta-model is proposed to predict the maximum angular distortion based on greenfield settlements, eccentricity, and relative soil-structure stiffness.

Topics
  • impedance spectroscopy