People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shkondin, Evgeniy
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (29/29 displayed)
- 2024Titanium Nitride Nanotrench Metasurfaces for Mid-infrared Chemical Sensingcitations
- 2023Optical properties of plasmonic titanium nitride thin films from ultraviolet to mid-infrared wavelengths deposited by pulsed-DC sputtering, thermal and plasma-enhanced atomic layer depositioncitations
- 2022Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor depositioncitations
- 2022Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor depositioncitations
- 2021Thickness-dependent optical properties of aluminum nitride films for mid-infrared wavelengthscitations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Microspherical nanoscopy: is it a reliable technique?citations
- 2020Fabrication of hollow coaxial Al 2 O 3 /ZnAl 2 O 4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2020Fabrication of hollow coaxial Al2O3/ZnAl2O4 high aspect ratio freestanding nanotubes based on the Kirkendall effectcitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Optical properties of titanium nitride films under low temperature
- 2019Optical properties of titanium nitride films under low temperature
- 2019Cryogenic characterization of titanium nitride thin filmscitations
- 2019Doped silicon plasmonic nanotrench structures for mid-infrared molecular sensing
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Plasmonic Characterization of Titanium Nitride Films under Low Temperatures
- 2019Lamellas metamaterials: Properties and potential applications
- 2019Lamellas metamaterials: Properties and potential applications
- 2018Experimental observation of Dyakonov plasmons in the mid-infraredcitations
- 2017Advanced fabrication of hyperbolic metamaterials
- 2017Large-scale high aspect ratio Al-doped ZnO nanopillars arrays as anisotropic metamaterials.citations
- 2017Highly ordered Al-doped ZnO nano-pillar and tube structures as hyperbolic metamaterials for mid-infrared plasmonics
- 2016Fabrication of Hyperbolic Metamaterials using Atomic Layer Deposition
- 2016Fabrication of high aspect ratio TiO2 and Al2O3 nanogratings by atomic layer depositioncitations
- 2016Conductive Oxides Trench Structures as Hyperbolic Metamaterials in Mid-infrared Range
- 2016Fabrication of high aspect ratio TiO 2 and Al 2 O 3 nanogratings by atomic layer depositioncitations
- 2016Fabrication of deep-profile Al-doped ZnO one- and two-dimensional lattices as plasmonic elements
- 2015Ultra-thin Metal and Dielectric Layers for Nanophotonic Applicationscitations
- 2014Depositing Materials on the Micro- and Nanoscale
Places of action
Organizations | Location | People |
---|
article
Optical, structural and composition properties of silicon nitride films deposited by reactive radio-frequency sputtering, low pressure and plasma-enhanced chemical vapor deposition
Abstract
We present a comparative study of optical properties of silicon nitride thin films deposited by reactive radiofrequency (R-RF) sputtering, low pressure chemical vapor deposition (LPCVD) and plasma-enhanced chemical vapor deposition (PECVD). For LPCVD process, two different proportions of mixed gases were used (LPCVD (A) and LPCVD (B) processes) and PECVD deposition were conducted in three regimes: low frequency (LF), mixed frequency and high frequency. Dielectric functions were extracted from ellipsometric measurements for the wavelength range from ultraviolet to near-infrared wavelengths, spanning from 210 nm to 1690 nm. To understand how different deposition parameters affect the optical properties of thin films, additional structures and composite analysis was done by using X-ray photoelectron spectroscopy, grazing incidence X-ray diffraction, X-ray reflectometry, atomic force microscopy, reflection electron energy loss spectroscopy, Fourier-transform infrared spectroscopy and stress measurements. The series of analysis show that the influence of deposition method on optical properties is significant especially for in the range of 200 nm–400 nm. For these UV wavelengths, LPCVD (A)-deposited films give a transparency window at the shortest wavelength up to 275 nm, while R-RF-sputtering and PECVD (LF) lead to transparency windows starting up to 320 nm wavelengths. Hence, appropriate techniques and recipes should be selected to account for various peculiarities in optical and structural properties of silicon nitride films towards their potential applications in photonic and nanostructured systems.