People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Ackermann, Jörg
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (22/22 displayed)
- 2024Ternary Polymer Solar Cells: Impact of Non-Fullerene Acceptors on Optical and Morphological Propertiescitations
- 2023Star-shape non-fullerene acceptor featuring an aza-triangulene core for organic solar cellscitations
- 2023Star-shape non-fullerene acceptor featuring an aza-triangulene core for organic solar cellscitations
- 2023Towards efficient NFA-based selective near-infrared organic photodetectors: impact of thermal annealing of polymer blendscitations
- 2022Improved ultraviolet stability of fullerene-based organic solar cells through light-induced enlargement and crystallization of fullerene domainscitations
- 2022Synthesis and Electron Accepting Properties of Two Di(benz[f]indenone)-Fused Tetraazaanthracene Isomerscitations
- 2022High-Efficiency Digital Inkjet-Printed Non-Fullerene Polymer Blends Using Non-Halogenated Solventscitations
- 2020Robust transparent conducting electrode based on silver nanowire coating on polyelectrolytes multilayerscitations
- 2019A new antimony-based organic-inorganic hybrid material as electron extraction layer for efficient and stable polymer solar cellscitations
- 2019A new antimony-based organic-inorganic hybrid material as electron extraction layer for efficient and stable polymer solar cellscitations
- 2017P-type semiconductor surfactant modified zinc oxide nanorods for hybrid bulk heterojunction solar cellscitations
- 2017Toward High-Temperature Stability of PTB7-Based Bulk Heterojunction Solar Cells: Impact of Fullerene Size and Solvent Additivecitations
- 2017Toward High-Temperature Stability of PTB7-Based Bulk Heterojunction Solar Cells: Impact of Fullerene Size and Solvent Additivecitations
- 2016Effect of ZnO nanoparticles on the photochemical and electronic stability of P3HT used in polymer solar cellscitations
- 2016Effect of ZnO nanoparticles on the photochemical and electronic stability of P3HT used in polymer solar cellscitations
- 2016Insight about electrical properties of low-temperature solution-processed Al-doped ZnO nanoparticle based layers for TFT applicationscitations
- 2016Insight about electrical properties of low-temperature solution-processed Al-doped ZnO nanoparticle based layers for TFT applicationscitations
- 2016Ligand-Free Synthesis of Aluminum-Doped Zinc Oxide Nanocrystals and their Use as Optical Spacers in Color-Tuned Highly Efficient Organic Solar Cellscitations
- 2016Ligand-Free Synthesis of Aluminum-Doped Zinc Oxide Nanocrystals and their Use as Optical Spacers in Color-Tuned Highly Efficient Organic Solar Cellscitations
- 2016Ligand-free synthesis of aluminum-doped zinc oxide nanocrystals and their use as optical spacers in color-tuned highly efficient organic solar cellscitations
- 2013A star-shaped molecule as hole transporting material in solution-processed thin-film transistorscitations
- 2012A New Active Organic Component for Flexible Ammonia Gas Sensorscitations
Places of action
Organizations | Location | People |
---|
article
Robust transparent conducting electrode based on silver nanowire coating on polyelectrolytes multilayers
Abstract
Transparent conductive electrodes were fabricated by the deposition of silver nanowires (AgNW) on various substrates modified by the deposition of polyelectrolyte multilayers (PEM) as primer. The PEM primer films were coated on the glass substrate by the sequential deposition of 7 or 8 layers of poly(diallyl dimethyl ammonium chloride) (PDADMAC) and poly(styrene sulfonate) to improve the adhesion of AgNW and produce flexible transparent conducting electrode. AgNW, with a diameter of 20-30 nm and 10-30 µm in length, were synthesized using a modified solvothermal method using glycerol and poly(vinyl pyrrolidone) as reducing and capping agent. The physicochemical properties of the AgNW coated PEM were characterized using UV-Vis spectroscopy, atomic force microscope and field emission scanning electron microscope. The electrical conductivity of the layer was measured by 4 points probe and a standard scotch tape peeling test was used to investigate the stability of the coated AgNW on the PEM. The PEM 7 layers (with PDADMAC as outer layer) gave the best results to immobilize AgNW with the lowest sheet resistance (14 Ω/square) while maintaining excellent transparency (85% transmission at 550 nm) even after up to 6 peeling test cycles. Finally, to demonstrate the benefit of this method, poly(ethylene terephthalate) sheet was coated with PEM primer and AgNW to produce flexible transparent conducting electrode.