People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Żukowska, Grażyna
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2020Electrocrystallization of nanostructured iron-selenide films for potential application in dye sensitized solar cellscitations
- 2018Snapshots of the Hydrolysis of Lithium 4,5-Dicyanoimidazolate-Glyme Solvates. Impact of Water Molecules on Aggregation Processes in Lithium-Ion Battery Electrolytescitations
- 2017Vibrational spectroscopic studies combined with viscosity analysis and VTF calculation for hybrid polymer electrolytescitations
- 2016Microwave Plasma Chemical Vapor Deposition of SbxOy/C negative electrodes and their compatibility with lithium and sodium Hückel salts - Based, tailored electrolytescitations
- 2016Understanding of Lithium 4,5-Dicyanoimidazolate-Poly(ethylene oxide) System: Influence of the Architecture of the Solid Phase on the Conductivitycitations
- 2015Study of ageing effects in polymer-in-salt electrolytes based on poly(acrylonitrile-co-butyl acrylate) and lithium saltscitations
- 2013Synthetic preparation of proton conducting polyvinyl alcohol and TiO2-doped inorganic glasses for hydrogen fuel cell applicationscitations
- 2011Effect of laser treatment on the surface of copper alloyscitations
- 2010Detailed studies on the fillers modification and their influence on composite, poly(oxyethylene)-based polymeric electrolytescitations
- 2009Modern generation of polymer electrolytes based on lithium conductive imidazole saltscitations
- 2000Effect of filler surface group on ionic interactions in PEG−LiClO4−Al2O3 composite polyether electrolytescitations
- 2000The effect of solvent and proton donor type on the conductivity and physico-chemical properties of poly(vinylidene fluoride)-based proton-conducting gel electrolytescitations
Places of action
Organizations | Location | People |
---|
article
Electrocrystallization of nanostructured iron-selenide films for potential application in dye sensitized solar cells
Abstract
<p>Growing need for thin films of materials applied in a variety of electronic devices focused interest of researchers on electrochemical deposition technique as a valuable and inexpensive tool for preparation of layers of various compounds including, among others, transition metal selenides. Iron-selenide system offers a possibility of application of the as grown and annealed nanostructured films in dye-sensitized solar cells (DSSCs). Moreover, by varying the electrodeposition conditions (applied potential or cathodic current density), composition of the starting solution, pH and temperature, it is possible to obtain materials of different structure and composition. Here, we report the synthesis of films of tetragonal FeSe and their transformation into orthorhombic FeSe<sub>2</sub> through post-synthetic annealing. Nanocrystalline iron monoselenide was grown on platinum or gold electrodes from acidic aqueous solution containing SeO<sub>3</sub><sup>2−</sup> and Fe<sup>2+</sup> ions, using either potentiostatic or galvanostatic method. Detailed studies of the as prepared films performed with X-ray diffraction, Raman spectroscopy and scanning electron microscopy combined with energy dispersive spectroscopy microanalysis revealed that the products are selenium rich, indicating that tetragonal FeSe co-deposits together with amorphous selenium. This by-product can be removed from the layers by vacuum evaporation at elevated temperatures, enabling preparation of films of tetragonal FeSe, or alternatively, can be utilized as a Se source in the post-synthetic annealing of as-deposited layers at 400 °C to obtain iron dichalcogenide, FeSe<sub>2</sub>, of good crystallinity and well developed morphology dedicated to direct use in DSSCs.</p>