People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rouessac, Vincent
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2021In- and out-plane transport properties of chemical vapor deposited TiO2 anatase filmscitations
- 2020Sorption and permeation of water through Plasma Enhanced Chemical Vapour Deposited phosphonic acid-based membranescitations
- 2019Effect of plasma power on the semiconducting behavior of low-frequency PECVD TiO2 and nitrogen-doped TiO2 anodic thin coatings: photo-electrochemical studies in a single compartment cell for hydrogen generation by solar water splittingcitations
- 2016Impact of plasma reactive ion etching on low dielectric constant porous organosilicate films’ microstructure and chemical compositioncitations
- 2006Porosity of supported thin films and membranes studied by ellipsometric porosimetry
- 2002In-situ Mass Spectrometry analyses of the fragmentation of linear and cyclic siloxanes in a glow discharge compared with ex-situ FTIR analyses of the deposits
Places of action
Organizations | Location | People |
---|
article
Sorption and permeation of water through Plasma Enhanced Chemical Vapour Deposited phosphonic acid-based membranes
Abstract
Phosphonic acid-based membranes were prepared by Plasma Enhanced Chemical Vapor Deposition (PECVD) with an input power of 100 W in a continuous or pulsed glow discharge. Comparing both kinds of plasma discharges makes appear that the pulsed configuration gives rise to PECVD materials with longer hydrocarbon chains and thus higher flexible polymer network which consequently present better sorption properties than those prepared from a continuous plasma discharge. Being more hydrophilic and richer in acidic functions than Nafion® 212, PECVD membranes (whatever the kind of plasma discharge, pulsed or continuous, during the deposition of films) present a better water sorption ability. Nevertheless, having a more highly cross-linked structure, they have a lower water diffusion/permeation capacity. Consequently PECVD membranes show singular water management properties which could be a great advantage for the final Proton-Exchange Membrane Electrolyte Cells and Proton-Exchange Membrane Fuel Cells applications.