People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Vaz, Filipe
Laboratoire Bourguignon des Matériaux et Procédés
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (31/31 displayed)
- 2024Recent advances in nanomaterial-based optical biosensors for food safety applications: Ochratoxin-A detection, as case studycitations
- 2024Immobilizing antibody biorecognition layers on Au-TiO<sub>2</sub> thin films: direct (physisorption) vs. DSP-crosslinking (chemisorption) surface functionalizationcitations
- 2024Experimental and Theoretical Studies on Ag Nanoparticles with Enhanced Plasmonic Response, Formed Within Al2O3 Thin Films Deposited by Magnetron Sputteringcitations
- 2024Evaluation of Performance and Longevity of Ti-Cu Dry Electrodes: Degradation Analysis Using Anodic Stripping Voltammetry
- 2023XRD and FTIR analysis of Ti–Si–C–ON coatings for biomedical applications
- 2023Functionalization of gutta-percha surfaces with argon and oxygen plasma treatments to enhance adhesivenesscitations
- 2023Thermoelectric study of Co2FeAl thin films grown onto flexible P(VDF-TrFE-CFE) terpolymercitations
- 2022Chitosan Micro-Membranes with Integrated Gold Nanoparticles as an LSPR-Based Sensing Platformcitations
- 2022Flexible multifunctional hard coatings based on chromium oxynitride for pressure-sensing applicationscitations
- 2022Flexible TiCux Thin Films with Dual Antimicrobial and Piezoresistive Characteristicscitations
- 2021Molybdenum Oxide Thin Films Grown on Flexible ITO-Coated PET Substratescitations
- 2021Me-doped Ti-Me intermetallic thin films used for dry biopotential electrodes: a comparative case studycitations
- 2020Dry electrodes for surface electromyography based on architectured titanium thin filmscitations
- 2020Fabrication, Characterization and Implementation of Thermo Resistive TiCu(N,O) Thin Films in a Polymer Injection Mold.citations
- 2020Magnetic Response Dependence of ZnO Based Thin Films on Ag Doping and Processing Architecturecitations
- 2019Nanocomposite thin films based on Au-Ag nanoparticles embedded in a CuO matrix for localized surface plasmon resonance sensingcitations
- 2019High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applicationscitations
- 2019High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applicationscitations
- 2018Optimization of nanocomposite Au/TiO2 thin films towards LSPR optical-sensingcitations
- 2018Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responsescitations
- 2018Nano-sculptured Janus-like TiAg thin films obliquely deposited by GLAD co-sputtering for temperature sensingcitations
- 2018Tuning electrical resistivity anisotropy of ZnO thin films for resistive sensor applications
- 2016Influence of Cu content on the structural and morphological features of TixCuy intermetallic thin films for biosignals acquisition
- 2015Study of the electrical behavior of nanostructured Ti-Ag thin films prepared by Glancing Angle Deposition
- 2014Electrochemical behaviour of nanocomposite Agx:TiN thin filmsfor dry biopotential electrodescitations
- 2014Process monitoring during AlNxOy deposition by reactive magnetron sputtering and correlation with the film's propertiescitations
- 2013TiAgx thin films for lower limb prosthesis pressure sensors: Effect of composition and structural changes on the electrical and thermal response of the filmscitations
- 2013Growth characteristics and properties of nanocomposite Ag-doped TiN thin films produced by glancing angle deposition
- 2013Nanocomposite Ag:TiN thin films for dry biopotential electrodescitations
- 2012Analysis of multifunctional titanium oxycarbide films as a function of oxygen additioncitations
- 2008The contribution of grain boundary barriers to the electrical conductivity of titanium oxide thin filmscitations
Places of action
Organizations | Location | People |
---|
article
High performance piezoresistive response of nanostructured ZnO/Ag thin films for pressure sensing applications
Abstract
This work reports on the preparation and characterization of zigzag nanostructured silver (Ag) doped zinc oxide (ZnO) films in order to improve piezoresistive response for pressure sensor applications. ZnO/Ag thin films were prepared by Glancing Angle Deposition (GLAD) from a metallic zinc (Zn) target DC sputtered in Ar + O2 atmosphere. The target was customized with different amounts of Ag pellets, symmetrically distributed along the preferential erosion area. It is shown that increasing the Ag content from 0 to 36 at.% in the ZnO/Ag system leads to a decrease of the electrical resistivity from 2.95 Ω cm to 1.52 × 10−5 Ω cm. The structural characterization of the thin films shows an evolution of the preferential growth, changing from a polycrystalline ZnO hexagonal-like structure, confirmed by the presence of dominant ZnO (002) and ZnO (101) diffraction peaks, to a Ag cubic (fcc)-like structure, as evidenced by the Ag (111), (200) and (220) diffraction peaks. The values of the gauge factor show a strong contribution both from Ag as well as from the zigzag nanostructure to the piezoresistive sensitivity of the films, in particular for Ag concentrations lower than 30 at.%. The tunneling distance between pairs of Ag conductive nanoregions was calculated for the different samples and in three different deformation regions, in order to evaluate its influence on the piezoresistive sensitivity. The results show that a longer distance between Ag particles, which varies from 0.1 to 10 nm, enhances the gauge factor, which ranges from 8 ± 1 to 120 ± 3, respectively. ; This work was supported by the Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UID/FIS/04650/2013 and project PTDC/EEI-SII/5582/2014. Armando Ferreira acknowledges the FCT for the SFRH/BPD/102402/2014 grant. Funding was also provided by the Region of Franche-Comté, the French RENATECH network. This work has also been supported by the EIPHI Graduate School (contract “ANR-17-EURE-0002”). Financial support from ...