People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Shanaghi, Ali
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (17/17 displayed)
- 2021Enhanced corrosion resistance and reduced cytotoxicity of the AZ91 Mg alloy by plasma nitriding and a hierarchical structure composed of ciprofloxacin-loaded polymeric multilayers and calcium phosphate coatingcitations
- 2021Corrosion resistance, nano-mechanical properties, and biocompatibility of Mg-plasma-implanted and plasma-etched Ta/TaN hierarchical multilayered coatings on the nitrided AZ91 Mg alloycitations
- 2021Enhanced corrosion resistance, antibacterial properties, and biocompatibility by hierarchical hydroxyapatite/ciprofloxacin-calcium phosphate coating on nitrided NiTi alloycitations
- 2021Effects of the tantalum intermediate layer on the nanomechanical properties and biocompatibility of nanostructured tantalum/tantalum nitride bilayer coating deposited by magnetron sputtering on the nickel titanium alloycitations
- 2020EIS and noise study of zirconia-alumina- benzotriazole nano-composite coating applied on Al2024 by the sol-gel methodcitations
- 2019Effect of Ti interlayer on corrosion behavior of nanostructured Ti/TiN multilayer coating deposited on TiAl<sub>6</sub>V<sub>4</sub>citations
- 2019Improved corrosion behavior of DLC-coated AZ91 Mg
- 2019Nano-mechanical properties of zirconia-alumina-benzotriazole nano-composite coating deposited on Al2024 by the sol-gel methodcitations
- 2019Effects of Benzotriazole on nano-mechanical properties of zirconia-alumina-Benzotriazole nanocomposite coating deposited on Al 2024 by the sol-gel methodcitations
- 2018Effects of silica and Ag on the electrochemical behavior of titania-based nanocomposite coatings deposited on 2024 aluminum alloy by the sol-gel methodcitations
- 2018Improving of tribology properties of TiAl6V4 with nanostructured Ti/TiN-multilayered coating deposited by high-vacuum magnetron sputteringcitations
- 2017Effect of Inhibitor Agents Addition on Corrosion Resistance Performance of Titania Sol–Gel Coatings Applied on 304 Stainless Steelcitations
- 2017Corrosion behavior of reactive sputtered Ti/TiN nanostructured coating and effects of intermediate titanium layer on self-healing propertiescitations
- 2017Nano mechanical and wear properties of multi-layer Ti/TiN coatings deposited on Al 7075 by high-vacuum magnetron sputteringcitations
- 2012Effect of plasma CVD operating temperature on nanomechanical properties of TiC nanostructured coating investigated by atomic force microscopycitations
- 2012Effects of duty cycle on microstructure and corrosion behavior of TiC coatings prepared by DC pulsed plasma CVDcitations
- 2011Improved tribological properties of TiC with porous nanostructured TiO 2 intermediate layercitations
Places of action
Organizations | Location | People |
---|
article
Nano-mechanical properties of zirconia-alumina-benzotriazole nano-composite coating deposited on Al2024 by the sol-gel method
Abstract
Nano-composite coatings containing inhibitors can provide protection against corrosion and owing to the favorable hardness and wear resistance, ceramic-based nano-composite coatings such as zirconia–alumina can effectively improve the wear behavior of aluminum. However, defects such as holes, pores, and micro-cracks reduce the protection efficiency and the use of inhibitors can prevent or reduce the formation of defects in the coating. In this work, a zirconia-alumina-benzotriazole coating is deposited on Al 2024-T6 by the sol-gel method with the following precursors: zirconium isopropoxide, aluminum tri-sec-butylate, and benzotriazole. The phase, structure, and morphology of the coatings are studied and the nano-mechanical properties are assessed by nano-indentation and nano-scratch tests under loads of 50 and 60μN. The results reveal the formation of a 810 nm thick homogenous and uniform coating in the presence of alumina and a 945 nm thick crack-free coating in the presence of benzotriazole. Alumina increases the hardness and elastic modulus to 1.15 and 15 GPa, respectively, and abrasive wear is dominated by the shear mechanism and benzotriazole enhances the flexibility and decreases the hardness of the coating.