People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Pereira, Nm
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (5/5 displayed)
- 2018Electrodeposition of an ultrathin TiO2 coating using a deep eutectic solvent based on choline chloridecitations
- 2017Electrodeposition of Mn and Mn-Sn Alloy Using Choline Chloride-Based Ionic Liquidscitations
- 2017Zinc Electrodeposition from deep eutectic solvent containing organic additivescitations
- 2017Electrodeposition of Co and Co composites with carbon nanotubes using choline chloride-based ionic liquidscitations
- 2015Influence of Amines on the Electrodeposition of Zn-Ni Alloy from a Eutectic-Type Ionic Liquidcitations
Places of action
Organizations | Location | People |
---|
article
Electrodeposition of an ultrathin TiO2 coating using a deep eutectic solvent based on choline chloride
Abstract
An alternative route is proposed for direct electrodeposition of TiO2 films. The electrochemical behaviour of Ti (IV) species in the deep eutectic solvent formed between choline chloride (ChCl) and ethylene glycol (EG) was studied by chronoamperometry and cyclic voltammetry. It was discussed that during the cathodic scan soluble subvalent TiCl chi species were formed using the eutectic system 1ChCl:2EG. Using ethylenediamine or LiF as additives it was possible to obtain a titanium dioxide thin film in the orthorhombic variant named brookite. Chronoamperometric investigations revealed a nucleation mechanism involving the simultaneous presence of 2D instantaneous nucleation process including lattice incorporation and a 3D diffusion-limited nucleation and growth process.